File size: 4,254 Bytes
36821d3
02f562e
36821d3
 
e9178fb
d2e7f91
 
61f9c80
78f9744
dff7018
e9178fb
 
61f9c80
 
 
e9178fb
 
 
 
 
61f9c80
 
e9178fb
 
 
 
 
c0fa328
e9178fb
 
 
c0fa328
 
dff7018
36821d3
 
 
dff7018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaaeb76
dff7018
36821d3
 
 
 
dff7018
36821d3
 
dff7018
 
36821d3
dff7018
 
 
78f9744
dff7018
36821d3
 
78f9744
 
 
 
 
36821d3
 
 
c0fa328
36821d3
 
aaaeb76
21cc5dc
778c655
21cc5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36821d3
 
 
 
 
 
dff7018
36821d3
 
dff7018
36821d3
21cc5dc
 
36821d3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import json
import os

import gradio as gr
from distilabel.llms import LlamaCppLLM
from distilabel.steps.tasks.argillalabeller import ArgillaLabeller

file_path = os.path.join(os.path.dirname(__file__), "Qwen2-5-0.5B-Instruct-f16.gguf")
download_url = "https://huggingface.co/gaianet/Qwen2.5-0.5B-Instruct-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-Q8_0.gguf?download=true"


if not os.path.exists(file_path):
    import requests
    import tqdm

    response = requests.get(download_url, stream=True)
    total_length = int(response.headers.get("content-length"))

    with open(file_path, "wb") as f:
        for chunk in tqdm.tqdm(
            response.iter_content(chunk_size=1024 * 1024),
            total=total_length / (1024 * 1024),
            unit="KB",
            unit_scale=True,
        ):
            f.write(chunk)

context_window = 1024 * 128
llm = LlamaCppLLM(
    model_path=file_path,
    n_gpu_layers=-1,
    n_ctx=context_window,
    generation_kwargs={"max_new_tokens": context_window},
)
task = ArgillaLabeller(llm=llm)
task.load()


def load_examples():
    with open("examples.json", "r") as f:
        return json.load(f)


# Create Gradio examples
examples = load_examples()


def process_fields(fields):
    if isinstance(fields, str):
        fields = json.loads(fields)
    if isinstance(fields, dict):
        fields = [fields]
    return [field if isinstance(field, dict) else json.loads(field) for field in fields]


def process_records_gradio(records, example_records, fields, question):
    try:
        # Convert string inputs to dictionaries
        records = json.loads(records)
        example_records = json.loads(example_records) if example_records else None
        fields = process_fields(fields) if fields else None
        question = json.loads(question) if question else None

        if not fields and not question:
            return "Error: Either fields or question must be provided"

        runtime_parameters = {"fields": fields, "question": question}
        if example_records:
            runtime_parameters["example_records"] = example_records

        task.set_runtime_parameters(runtime_parameters)

        results = []
        output = task.process(inputs=[{"records": record} for record in records])
        for _ in range(len(records)):
            entry = next(output)[0]
            if entry["suggestions"]:
                results.append(entry["suggestions"].serialize())

        return json.dumps({"results": results}, indent=2)
    except Exception as e:
        raise Exception(f"Error: {str(e)}")
        return f"Error: {str(e)}"


description = """
An example workflow for JSON payload.

```python
import json
import os
from gradio_client import Client

import argilla as rg

# Initialize Argilla client
client = rg.Argilla(
    api_key=os.environ["ARGILLA_API_KEY"], api_url=os.environ["ARGILLA_API_URL"]
)

# Load the dataset
dataset = client.datasets(name="my_dataset", workspace="my_workspace")

# Prepare example data
example_field = dataset.settings.fields["my_input_field"].serialize()
example_question = dataset.settings.questions["my_question_to_predict"].serialize()

payload = {
    "records": [next(dataset.records()).to_dict()],
    "fields": [example_field],
    "question": example_question,
}

# Use gradio client to process the data
client = Client("davidberenstein1957/distilabel-argilla-labeller")

result = client.predict(
    records=json.dumps(payload["records"]),
    example_records=json.dumps(payload["example_records"]),
    fields=json.dumps(payload["fields"]),
    question=json.dumps(payload["question"]),
    api_name="/predict"
)

```
"""

interface = gr.Interface(
    fn=process_records_gradio,
    inputs=[
        gr.Code(label="Records (JSON)", language="json", lines=5),
        gr.Code(label="Example Records (JSON, optional)", language="json", lines=5),
        gr.Code(label="Fields (JSON, optional)", language="json"),
        gr.Code(label="Question (JSON, optional)", language="json"),
    ],
    examples=examples,
    outputs=gr.Code(label="Suggestions", language="json", lines=10),
    title="Distilabel - ArgillaLabeller - Record Processing Interface",
    description=description,
)

if __name__ == "__main__":
    interface.launch()