File size: 5,224 Bytes
36821d3
5ff9afc
36821d3
 
5ff9afc
d2e7f91
 
5ff9afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bd449
 
1853f75
dff7018
5ff9afc
 
36821d3
dff7018
 
 
 
 
 
 
e525bd5
dff7018
 
 
 
 
 
 
 
 
aaaeb76
6199610
36821d3
 
d3fc1a4
aa23dc4
d3fc1a4
aa23dc4
d3fc1a4
aa23dc4
d3fc1a4
aa23dc4
36821d3
dff7018
607292d
36821d3
dff7018
 
 
78f9744
5ff9afc
 
36821d3
5ff9afc
 
 
 
 
 
 
 
a4aa9e7
 
78f9744
6199610
36821d3
 
 
d3fc1a4
36821d3
aaaeb76
21cc5dc
778c655
21cc5dc
 
 
 
 
 
 
 
 
e525bd5
 
21cc5dc
 
 
 
e525bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cc5dc
e525bd5
21cc5dc
e525bd5
 
 
 
 
21cc5dc
 
e525bd5
21cc5dc
 
36821d3
 
 
 
 
 
dff7018
36821d3
 
dff7018
5ff9afc
36821d3
21cc5dc
 
36821d3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import json
import os

import gradio as gr
from distilabel.llms import InferenceEndpointsLLM, LlamaCppLLM
from distilabel.steps.tasks.argillalabeller import ArgillaLabeller

file_path = os.path.join(os.path.dirname(__file__), "Qwen2-5-0.5B-Instruct-f16.gguf")
download_url = "https://huggingface.co/gaianet/Qwen2.5-0.5B-Instruct-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-Q5_K_S.gguf?download=true"


if not os.path.exists(file_path):
    import requests
    import tqdm

    response = requests.get(download_url, stream=True)
    total_length = int(response.headers.get("content-length"))

    with open(file_path, "wb") as f:
        for chunk in tqdm.tqdm(
            response.iter_content(chunk_size=1024 * 1024),
            total=total_length / (1024 * 1024),
            unit="KB",
            unit_scale=True,
        ):
            f.write(chunk)


llm_cpp = LlamaCppLLM(
    model_path=file_path,
    n_gpu_layers=-1,
    n_ctx=1000 * 114,
    generation_kwargs={"max_new_tokens": 1000 * 14},
)
task_cpp = ArgillaLabeller(llm=llm_cpp)
task_cpp.load()

llm_ep = InferenceEndpointsLLM(
    model_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
    tokenizer_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
    generation_kwargs={"max_new_tokens": 1000},
)
task_ep = ArgillaLabeller(llm=llm_ep)
task_ep.load()


def load_examples():
    with open("examples.json", "r") as f:
        return json.load(f)


# Create Gradio examples
examples = load_examples()[:1]


def process_fields(fields):
    if isinstance(fields, str):
        fields = json.loads(fields)
    if isinstance(fields, dict):
        fields = [fields]
    return [field if isinstance(field, dict) else json.loads(field) for field in fields]


def process_records_gradio(records, fields, question, example_records=None):
    try:
        # Convert string inputs to dictionaries
        if isinstance(records, str) and records:
            records = json.loads(records)
        if isinstance(example_records, str) and example_records:
            example_records = json.loads(example_records)
        if isinstance(fields, str) and fields:
            fields = json.loads(fields)
        if isinstance(question, str) and question:
            question = json.loads(question)

        if not fields and not question:
            raise Exception("Error: Either fields or question must be provided")

        runtime_parameters = {"fields": fields, "question": question}
        if example_records:
            runtime_parameters["example_records"] = example_records

        task_ep.set_runtime_parameters(runtime_parameters)
        task_cpp.set_runtime_parameters(runtime_parameters)
        results = []
        try:
            output = next(
                task_ep.process(inputs=[{"record": record} for record in records])
            )
        except Exception:
            output = next(
                task_cpp.process(inputs=[{"record": record} for record in records])
            )
        for idx in range(len(records)):
            entry = output[idx]
            if entry["suggestions"]:
                results.append(entry["suggestions"])

        return json.dumps({"results": results}, indent=2)
    except Exception as e:
        raise gr.Error(f"Error: {str(e)}")


description = """
An example workflow for JSON payload.

```python
import json
import os
from gradio_client import Client

import argilla as rg

# Initialize Argilla client
gradio_client = Client("davidberenstein1957/distilabel-argilla-labeller")
argilla_client = rg.Argilla(
    api_key=os.environ["ARGILLA_API_KEY"], api_url=os.environ["ARGILLA_API_URL"]
)

# Load the dataset
dataset = argilla_client.datasets(name="my_dataset", workspace="my_workspace")

# Get the field and question
field = dataset.settings.fields["text"]
question = dataset.settings.questions["sentiment"]

# Get completed and pending records
completed_records_filter = rg.Filter(("status", "==", "completed"))
pending_records_filter = rg.Filter(("status", "==", "pending"))
example_records = list(
    dataset.records(
        query=rg.Query(filter=completed_records_filter),
        limit=5,
    )
)
some_pending_records = list(
    dataset.records(
        query=rg.Query(filter=pending_records_filter),
        limit=5,
    )
)

# Process the records
payload = {
    "records": [record.to_dict() for record in some_pending_records],
    "fields": [field.serialize()],
    "question": question.serialize(),
    "example_records": [record.to_dict() for record in example_records],
    "api_name": "/predict",
}

response = gradio_client.predict(**payload)
```
"""

interface = gr.Interface(
    fn=process_records_gradio,
    inputs=[
        gr.Code(label="Records (JSON)", language="json", lines=5),
        gr.Code(label="Example Records (JSON, optional)", language="json", lines=5),
        gr.Code(label="Fields (JSON, optional)", language="json"),
        gr.Code(label="Question (JSON, optional)", language="json"),
    ],
    examples=examples,
    cache_examples=False,
    outputs=gr.Code(label="Suggestions", language="json", lines=10),
    title="Distilabel - ArgillaLabeller - Record Processing Interface",
    description=description,
)

if __name__ == "__main__":
    interface.launch()