File size: 9,399 Bytes
2b4b309
2723bd3
b01e314
2b4b309
90e8636
e4b6cc5
6fc91c7
8571d5a
2b4b309
f04dfa8
 
 
 
 
 
 
6fc91c7
0d28c87
 
 
 
90e8636
 
f04dfa8
 
 
 
 
 
e36d40b
2b4b309
 
 
8571d5a
2723bd3
f04dfa8
2723bd3
e1fdeee
2723bd3
 
2b4b309
 
 
 
6fc91c7
2b4b309
 
 
 
2723bd3
 
 
 
 
 
 
 
 
2b4b309
 
6fc91c7
 
 
 
 
0d28c87
 
2723bd3
3b2d079
2b4b309
0d28c87
 
 
 
 
2eb6d1a
 
0d28c87
 
 
8571d5a
e36d40b
 
f04dfa8
e36d40b
f04dfa8
 
e36d40b
 
6fc91c7
4d1c962
 
 
 
 
 
 
 
 
2b4b309
 
0c58a58
ff44e29
2b4b309
8571d5a
4d1c962
 
2723bd3
 
f04dfa8
2723bd3
8571d5a
 
b000e50
8571d5a
0d28c87
4d1c962
 
 
8571d5a
2b4b309
 
2eb6d1a
2723bd3
2b4b309
6fc91c7
 
40e000b
3b2d079
2b4b309
8571d5a
2723bd3
 
 
 
e4b6cc5
2723bd3
 
 
 
2b4b309
90e8636
b000e50
 
 
9d1a2d6
b000e50
9d1a2d6
b01e314
 
 
f04dfa8
90e8636
e4b6cc5
 
b01e314
318e969
b01e314
2723bd3
0d28c87
 
 
 
c7f7750
0d28c87
 
 
 
 
 
 
 
8571d5a
90e8636
0d28c87
 
 
 
40e000b
0d28c87
 
 
 
 
 
 
40e000b
75f9ac3
0d28c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75f9ac3
0d28c87
 
 
3b2d079
75f9ac3
 
0d28c87
 
 
 
 
 
 
 
b000e50
0d28c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1a2d6
0d28c87
ed40758
f04dfa8
9d1a2d6
 
 
b000e50
f04dfa8
0d28c87
 
9d1a2d6
 
 
f04dfa8
 
 
9d1a2d6
b000e50
 
 
9d1a2d6
b000e50
 
 
9d1a2d6
0d28c87
 
 
 
 
 
 
 
9d1a2d6
 
0d28c87
 
 
 
 
9d1a2d6
 
f04dfa8
9d1a2d6
b000e50
 
 
 
 
0d28c87
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import multiprocessing
import time
from typing import Union

import gradio as gr
import pandas as pd
from distilabel.distiset import Distiset
from huggingface_hub import whoami

from src.distilabel_dataset_generator.pipelines.sft import (
    DEFAULT_DATASET,
    DEFAULT_DATASET_DESCRIPTION,
    DEFAULT_SYSTEM_PROMPT,
    PROMPT_CREATION_PROMPT,
    get_pipeline,
    get_prompt_generation_step,
)
from src.distilabel_dataset_generator.utils import (
    get_login_button,
    get_org_dropdown,
)


def _run_pipeline(result_queue, num_turns, num_rows, system_prompt):
    pipeline = get_pipeline(
        num_turns,
        num_rows,
        system_prompt,
    )
    distiset: Distiset = pipeline.run(use_cache=False)
    result_queue.put(distiset)


def generate_system_prompt(dataset_description, progress=gr.Progress()):
    progress(0.1, desc="Initializing text generation")
    generate_description = get_prompt_generation_step()
    progress(0.4, desc="Loading model")
    generate_description.load()
    progress(0.7, desc="Generating system prompt")
    result = next(
        generate_description.process(
            [
                {
                    "system_prompt": PROMPT_CREATION_PROMPT,
                    "instruction": dataset_description,
                }
            ]
        )
    )[0]["generation"]
    progress(1.0, desc="System prompt generated")
    return result


def generate_sample_dataset(system_prompt, progress=gr.Progress()):
    progress(0.1, desc="Initializing sample dataset generation")
    result = generate_dataset(system_prompt, num_turns=1, num_rows=2, progress=progress)
    progress(1.0, desc="Sample dataset generated")
    return result


def generate_dataset(
    system_prompt,
    num_turns=1,
    num_rows=5,
    private=True,
    org_name=None,
    repo_name=None,
    progress=gr.Progress(),
    oauth_token: Union[gr.OAuthToken, None]
):
    repo_id = (
        f"{org_name}/{repo_name}"
        if repo_name is not None and org_name is not None
        else None
    )
    if repo_id is not None:
        if not repo_id:
            raise gr.Error(
                "Please provide a repo_name and org_name to push the dataset to."
            )

    if num_turns > 4:
        num_turns = 4
        gr.Info("You can only generate a dataset with 4 or fewer turns. Setting to 4.")
    if num_rows > 5000:
        num_rows = 5000
        gr.Info(
            "You can only generate a dataset with 5000 or fewer rows. Setting to 5000."
        )

    if num_rows < 50:
        duration = 60
    elif num_rows < 250:
        duration = 300
    elif num_rows < 1000:
        duration = 500
    else:
        duration = 1000

    result_queue = multiprocessing.Queue()
    p = multiprocessing.Process(
        target=_run_pipeline,
        args=(result_queue, num_turns, num_rows, system_prompt),
    )

    try:
        p.start()
        total_steps = 100
        for step in range(total_steps):
            if not p.is_alive() or p._popen.poll() is not None:
                break
            progress(
                (step + 1) / total_steps,
                desc=f"Generating dataset with {num_rows} rows. Don't close this window.",
            )
            time.sleep(duration / total_steps)  # Adjust this value based on your needs
        p.join()
    except Exception as e:
        raise gr.Error(f"An error occurred during dataset generation: {str(e)}")

    distiset = result_queue.get()

    if repo_id is not None:
        progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
        distiset.push_to_hub(
            repo_id=repo_id,
            private=private,
            include_script=False,
            token=oauth_token.token,
        )

    # If not pushing to hub generate the dataset directly
    distiset = distiset["default"]["train"]
    if num_turns == 1:
        outputs = distiset.to_pandas()[["prompt", "completion"]]
    else:
        outputs = distiset.to_pandas()[["messages"]]

    progress(1.0, desc="Dataset generation completed")
    return pd.DataFrame(outputs)


def generate_pipeline_code() -> str:
    with open("src/distilabel_dataset_generator/pipelines/sft.py", "r") as f:
        pipeline_code = f.read()

    return pipeline_code

css = """
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
"""

with gr.Blocks(
    title="⚗️ Distilabel Dataset Generator",
    head="⚗️ Distilabel Dataset Generator",
    css=css
) as app:
    get_login_button()
    gr.Markdown("## Iterate on a sample dataset")
    with gr.Column() as main_ui:
        dataset_description = gr.TextArea(
            label="Provide a description of the dataset",
            value=DEFAULT_DATASET_DESCRIPTION,
        )
        with gr.Row():
            gr.Column(scale=1)
            btn_generate_system_prompt = gr.Button(value="Generate sample dataset")
            gr.Column(scale=1)

        system_prompt = gr.TextArea(
            label="If you want to improve the dataset, you can tune the system prompt and regenerate the sample",
            value=DEFAULT_SYSTEM_PROMPT,
        )

        with gr.Row():
            gr.Column(scale=1)
            btn_generate_sample_dataset = gr.Button(
                value="Regenerate sample dataset",
            )
            gr.Column(scale=1)

        with gr.Row():
            table = gr.DataFrame(
                value=DEFAULT_DATASET,
                interactive=False,
                wrap=True,
            )

        result = btn_generate_system_prompt.click(
            fn=generate_system_prompt,
            inputs=[dataset_description],
            outputs=[system_prompt],
            show_progress=True,
        ).then(
            fn=generate_sample_dataset,
            inputs=[system_prompt],
            outputs=[table],
            show_progress=True,
        )

        btn_generate_sample_dataset.click(
            fn=generate_sample_dataset,
            inputs=[system_prompt],
            outputs=[table],
            show_progress=True,
        )

        # Add a header for the full dataset generation section
        gr.Markdown("## Generate full dataset")
        gr.Markdown(
            "Once you're satisfied with the sample, generate a larger dataset and push it to the Hub."
        )

        with gr.Column() as push_to_hub_ui:
            with gr.Row(variant="panel"):
                num_turns = gr.Number(
                    value=1,
                    label="Number of turns in the conversation",
                    minimum=1,
                    maximum=4,
                    step=1,
                    info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
                )
                num_rows = gr.Number(
                    value=100,
                    label="Number of rows in the dataset",
                    minimum=1,
                    maximum=5000,
                    info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
                )

            with gr.Row(variant="panel"):
                org_name = get_org_dropdown()
                repo_name = gr.Textbox(label="Repo name", placeholder="dataset_name")
                private = gr.Checkbox(
                    label="Private dataset", value=True, interactive=True, scale=0.5
                )

            btn_generate_full_dataset = gr.Button(
                value="⚗️ Generate Full Dataset", variant="primary"
            )

            success_message = gr.Markdown(visible=False)

    def show_success_message(org_name, repo_name):
        return gr.Markdown(
            value=f"""
            <div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
                <h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
                <p style="margin-top: 0.5em;">
                    The generated dataset is in the right format for Fine-tuning with TRL, AutoTrain or other frameworks.
                    Your dataset is now available at:
                    <a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
                        https://huggingface.co/datasets/{org_name}/{repo_name}
                    </a>
                </p>
            </div>
        """,
            visible=True,
        )

    def hide_success_message():
        return gr.Markdown(visible=False)

    btn_generate_full_dataset.click(
        fn=hide_success_message,
        outputs=[success_message],
    ).then(
        fn=generate_dataset,
        inputs=[
            system_prompt,
            num_turns,
            num_rows,
            private,
            org_name,
            repo_name,
        ],
        outputs=[table],
        show_progress=True,
    ).then(
        fn=show_success_message,
        inputs=[org_name, repo_name],
        outputs=[success_message],
    )

    gr.Markdown("## Or run this pipeline locally with distilabel")

    with gr.Accordion("Run this pipeline on Distilabel", open=False):
        pipeline_code = gr.Code(
            value=generate_pipeline_code(),
            language="python",
            label="Distilabel Pipeline Code",
        )

    app.load(get_org_dropdown, outputs=[org_name])