|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Thin wrappers and replacement classes for LlamaForCausalLM |
|
- Simple sharding across multiple GPUs; will be slow but good for quality evals |
|
- May need to update for Llama 405B |
|
""" |
|
from typing import Optional, Tuple, List, Union |
|
|
|
import warnings |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from transformers.models.llama.modeling_llama import ( |
|
LlamaModel, LlamaForCausalLM, LLAMA_INPUTS_DOCSTRING, |
|
) |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.utils import ( |
|
add_start_docstrings_to_model_forward, logging, |
|
) |
|
|
|
from .convert_model import get_attention_cache |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class ShardedLolcatsLlamaModel(LlamaModel): |
|
""" |
|
Wrapper for Llama or Mistral-like base model |
|
|
|
Modified from transformers.models.llama.modeling_llama.LlamaModel |
|
-> Only difference is using KV state for past_key_values instead of cache |
|
""" |
|
def __init__(self, *args: any, **kwargs: any): |
|
super().__init__(*args, **kwargs) |
|
self.layerwise_cpu = False |
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
batch_size, seq_length = input_ids.shape |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
return_legacy_cache = False |
|
if use_cache: |
|
if past_key_values is None or isinstance(past_key_values, DynamicCache): |
|
attention_type = getattr(self.layers[0].self_attn, 'attention_type', None) |
|
past_key_values = get_attention_cache(attention_type, past_key_values) |
|
else: |
|
past_key_values.get_usable_length(seq_length) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
position_embeddings = None |
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
|
|
device = decoder_layer.self_attn.q_proj.weight.device |
|
hidden_states = hidden_states.to(device) |
|
position_ids = position_ids.to(device) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(device) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if getattr(decoder_layer.self_attn, 'converted', False): |
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
position_embeddings, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
) |
|
else: |
|
with torch.no_grad(): |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states.to(self.norm.weight.device)) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if return_legacy_cache: |
|
next_cache = next_cache.to_legacy_cache() |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class ShardedLolcatsLlamaForCausalLM(LlamaForCausalLM): |
|
""" |
|
Wrapper for Llama-like autoregressive language model |
|
""" |
|
def __init__(self, config): |
|
|
|
if getattr(config, 'attention_bias', None) is None: |
|
config.attention_bias = False |
|
if getattr(config, 'rope_scaling', None) is None: |
|
config.rope_scaling = None |
|
if getattr(config, 'pretraining_tp', None) is None: |
|
config.pretraining_tp = 1 |
|
super().__init__(config) |
|
self.model = ShardedLolcatsLlamaModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward(self, *args: any, labels: Optional[torch.LongTensor] = None, **kwargs: any): |
|
|
|
outputs = self.model(*args, **kwargs) |
|
hidden_states = outputs[0] |
|
if getattr(self.model.layers[0].self_attn, 'train_attention', False): |
|
logits = None |
|
else: |
|
if self.config.pretraining_tp > 1: |
|
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) |
|
logits = [F.linear(hidden_states, lm_head_slices[i]) |
|
for i in range(self.config.pretraining_tp)] |
|
logits = torch.cat(logits, dim=-1) |
|
else: |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
return CausalLMOutputWithPast( |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|