chore: adding the app
Browse files
app.py
CHANGED
@@ -1,7 +1,171 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
demo.launch()
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append("../")
|
3 |
+
|
4 |
+
import torch
|
5 |
import gradio as gr
|
6 |
+
from omegaconf import OmegaConf
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
+
from src.utils.setup import seed_everything
|
11 |
+
from src.utils.logging import print_header
|
12 |
+
from src.model.pretrained import get_pretrained_loader
|
13 |
+
from src.model.load_model import load_and_convert_attns, load_and_convert_finetune
|
14 |
+
|
15 |
+
def load_model_from_checkpoint(
|
16 |
+
attn_mlp_checkpoint_path: str = None,
|
17 |
+
finetune_checkpoint_path: str = None,
|
18 |
+
model_config_path: str = None,
|
19 |
+
distill_config_path: str = None,
|
20 |
+
finetune_config_path: str = None,
|
21 |
+
config_dir: str = 'configs',
|
22 |
+
print_model: bool = False,
|
23 |
+
debug: bool = False,
|
24 |
+
huggingface_token: str = None,
|
25 |
+
use_cuda_kernels: bool = False,
|
26 |
+
use_attention: bool = False
|
27 |
+
):
|
28 |
+
|
29 |
+
is_local = attn_mlp_checkpoint_path.endswith(".pt")
|
30 |
+
|
31 |
+
model_config = OmegaConf.load(model_config_path)
|
32 |
+
distill_config = OmegaConf.load(distill_config_path)
|
33 |
+
finetune_config = OmegaConf.load(finetune_config_path)
|
34 |
+
|
35 |
+
model_loader = get_pretrained_loader(**model_config.model,
|
36 |
+
huggingface_token=huggingface_token)
|
37 |
+
tokenizer = model_loader.load_tokenizer()
|
38 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
39 |
+
tokenizer.padding_side = 'left'
|
40 |
+
if use_attention:
|
41 |
+
model = model_loader.load('softmax')
|
42 |
+
return model, model_config, tokenizer
|
43 |
+
|
44 |
+
model = model_loader.load(model_config['attention']['attention_type'])
|
45 |
+
if use_cuda_kernels:
|
46 |
+
print('*** Using TK CUDA kernels **')
|
47 |
+
model_config['attention']['attention_type'] = 'lolcats_llama_window_tk_gen'
|
48 |
+
|
49 |
+
if is_local:
|
50 |
+
checkpoint_path = attn_mlp_checkpoint_path
|
51 |
+
else:
|
52 |
+
checkpoint_path = None
|
53 |
+
model, distill_peft_config = load_and_convert_attns(
|
54 |
+
model, model_config,
|
55 |
+
attention_type=None,
|
56 |
+
checkpoint_path=checkpoint_path,
|
57 |
+
print_model=debug,
|
58 |
+
merge_loras=False,
|
59 |
+
peft_gradient_checkpointing=False,
|
60 |
+
train_attention=False)
|
61 |
+
|
62 |
+
if is_local:
|
63 |
+
checkpoint_path = attn_mlp_checkpoint_path
|
64 |
+
else:
|
65 |
+
checkpoint_path = None
|
66 |
+
model, ft_peft_config = load_and_convert_finetune(
|
67 |
+
model, finetune_config,
|
68 |
+
checkpoint_path=checkpoint_path,
|
69 |
+
print_model=debug,
|
70 |
+
merge_loras=False,
|
71 |
+
peft_gradient_checkpointing=False)
|
72 |
+
|
73 |
+
if not is_local:
|
74 |
+
model = load_hf_weights(
|
75 |
+
model,
|
76 |
+
attn_mlp_checkpoint_path, finetune_checkpoint_path,
|
77 |
+
filename="model.pt"
|
78 |
+
)
|
79 |
+
if use_cuda_kernels:
|
80 |
+
print('*** Using TK CUDA kernels ***')
|
81 |
+
|
82 |
+
if print_model:
|
83 |
+
print('*** Model after checkpoint load ***')
|
84 |
+
print(model)
|
85 |
+
|
86 |
+
return model, model_config, tokenizer
|
87 |
+
|
88 |
+
def load_hf_weights(model, distill_repo_id, ft_repo_id, filename="model.pt"):
|
89 |
+
for repo_id in [distill_repo_id, ft_repo_id]:
|
90 |
+
if repo_id is None: continue
|
91 |
+
|
92 |
+
print(f"Loading weights from {repo_id}")
|
93 |
+
|
94 |
+
local_file_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
95 |
+
state_dict = torch.load(local_file_path)
|
96 |
+
if 'model_state_dict' in state_dict:
|
97 |
+
state_dict = state_dict['model_state_dict']
|
98 |
+
else:
|
99 |
+
pass
|
100 |
+
_keys = model.load_state_dict(state_dict, strict=False)
|
101 |
+
if len(_keys.unexpected_keys) > 0:
|
102 |
+
new_state_dict = {k.replace('model.', 'model.model.'): v for k, v in state_dict.items()}
|
103 |
+
_keys = model.load_state_dict(new_state_dict, strict=False)
|
104 |
+
if len(_keys.unexpected_keys) > 0:
|
105 |
+
new_state_dict = {k.replace('model.', 'base_model.model.model.'): v for k, v in state_dict.items()}
|
106 |
+
_keys = model.load_state_dict(new_state_dict, strict=False)
|
107 |
+
|
108 |
+
try:
|
109 |
+
assert len(_keys.unexpected_keys) == 0
|
110 |
+
print('*** All expected keys matched successfully ***')
|
111 |
+
except Exception as e:
|
112 |
+
print(e)
|
113 |
+
print('*** Error: unexpected keys in checkpoint - please fix ***')
|
114 |
+
print('Unexpected keys:')
|
115 |
+
for k in _keys.unexpected_keys:
|
116 |
+
print(k)
|
117 |
+
exit()
|
118 |
+
|
119 |
+
return model
|
120 |
+
|
121 |
+
def load_model_and_tokenizer():
|
122 |
+
CONFIG_DIR = 'configs' # Update to your path
|
123 |
+
|
124 |
+
model_config_path = f"{CONFIG_DIR}/model/distill_llama3_1_8b_lk_smd_wtk64_fd64_w01.yaml"
|
125 |
+
distill_config_path = f"{CONFIG_DIR}/experiment/distill_alpaca_clean_xent0_mse1000_lr1e-2.yaml"
|
126 |
+
finetune_config_path = f"{CONFIG_DIR}/experiment/finetune_lora_qkvo_alpaca_clean.yaml"
|
127 |
+
attn_mlp_checkpoint_path = 'hazyresearch/lolcats-llama-3.1-8b-distill'
|
128 |
+
finetune_checkpoint_path = 'hazyresearch/lolcats-llama-3.1-8b-ft-lora'
|
129 |
+
|
130 |
+
model, model_config, tokenizer = load_model_from_checkpoint(
|
131 |
+
attn_mlp_checkpoint_path=attn_mlp_checkpoint_path,
|
132 |
+
finetune_checkpoint_path=finetune_checkpoint_path,
|
133 |
+
model_config_path=model_config_path,
|
134 |
+
distill_config_path=distill_config_path,
|
135 |
+
finetune_config_path=finetune_config_path,
|
136 |
+
config_dir=CONFIG_DIR,
|
137 |
+
print_model=False,
|
138 |
+
debug=False,
|
139 |
+
huggingface_token=None,
|
140 |
+
use_cuda_kernels=False,
|
141 |
+
use_attention=False
|
142 |
+
)
|
143 |
+
model = model.to('cuda')
|
144 |
+
model.eval()
|
145 |
+
return model, tokenizer
|
146 |
+
|
147 |
+
model, tokenizer = load_model_and_tokenizer()
|
148 |
+
|
149 |
+
def generate_response(prompt):
|
150 |
+
all_prompts = [prompt]
|
151 |
+
|
152 |
+
with torch.no_grad():
|
153 |
+
model_input = tokenizer(all_prompts, return_tensors="pt").to(model.device)
|
154 |
+
model_output = model.generate(
|
155 |
+
**model_input, use_cache=True,
|
156 |
+
max_new_tokens=50,
|
157 |
+
do_sample=False,
|
158 |
+
top_k=1,
|
159 |
+
top_p=1.0,
|
160 |
+
num_return_sequences=1,
|
161 |
+
pad_token_id=tokenizer.eos_token_id)
|
162 |
+
generated_tokens = model_output[0]
|
163 |
+
input_len = model_input['input_ids'].shape[1]
|
164 |
+
generated_tokens = generated_tokens[input_len:]
|
165 |
+
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
166 |
+
|
167 |
+
return generated_text
|
168 |
|
169 |
+
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="LOLcats Model Demo")
|
|
|
170 |
|
171 |
+
iface.launch()
|
|