dataset: name: alpaca_clean dataset_config: name: default path: yahma/alpaca-cleaned chunk_size: 1024 # sequence length for distilling concat_data: true cache_dir: 'data/alpaca' # Change this to where you want to save pretrained_model_config: # will be updated based on model_config pretrained_model_name_or_path: 'meta-llama/Meta-Llama-3.1-8B' cache_dir: '/data_persistent2/sim_data/llama-3_1-8b/' preprocess_config: null dataloader: batch_size: 1 num_workers: 2 drop_last: false pin_memory: true optimizer: optim: adamw_torch_fused lr: 0.01 weight_decay: 0.0 lr_scheduler: lr_scheduler_type: reduce_lr_on_plateau mode: min factor: 0.1 patience: 10 min_lr: 0.00001 trainer: # HuggingFace Trainer-like arguments name: distill_attention_xent_mse reverse_kl: false mse_factor: 1000 xent_factor: 1 bf16: true train_split: train val_split: validation num_train_epochs: 2 gradient_accumulation_steps: 8 seed: 42 batch_size: 1 load_best_model_at_end: true greater_is_better: false metric_for_best_model: distill/eval/loss logging_steps: 100 evaluation_strategy: steps max_steps: -1 eval_steps: 100 max_eval_batches: null