ariankhalfani commited on
Commit
d745fdc
1 Parent(s): 173d79d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -13
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import os
2
  import sqlite3
3
  import requests
@@ -7,20 +8,14 @@ import numpy as np
7
  from sentence_transformers import SentenceTransformer
8
  import gradio as gr
9
 
10
- # Configure Hugging Face API URLs and headers
11
- api_urls = {
12
- "Meta-Llama-3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct",
13
- "Meta-Llama-3-8B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct",
14
- "Gemma-2-27B-IT": "https://api-inference.huggingface.co/models/google/gemma-2-27b-it",
15
- "Gemma-2-27B": "https://api-inference.huggingface.co/models/google/gemma-2-27b"
16
- }
17
-
18
  huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
19
  headers = {"Authorization": f"Bearer {huggingface_api_key}"}
20
 
21
  # Function to query Hugging Face model
22
- def query_huggingface(model_name, payload):
23
- response = requests.post(api_urls[model_name], headers=headers, json=payload)
24
  return response.json()
25
 
26
  # Function to extract text from PDF
@@ -90,10 +85,10 @@ model = SentenceTransformer('all-MiniLM-L6-v2')
90
  faiss_index, context_list = update_faiss_index()
91
 
92
  # Gradio interface for chatbot
93
- def chatbot(model_name, question):
94
  relevant_contexts = retrieve_relevant_context(faiss_index, context_list, question)
95
  user_input = f"question: {question} context: {' '.join(relevant_contexts)}"
96
- response = query_huggingface(model_name, {"inputs": user_input})
97
  response_text = response[0].get("generated_text", "Sorry, I couldn't generate a response.") if isinstance(response, list) else response.get("generated_text", "Sorry, I couldn't generate a response.")
98
  return response_text
99
 
@@ -108,7 +103,7 @@ def upload_pdf(file):
108
  # Gradio interface
109
  iface = gr.Interface(
110
  fn=chatbot,
111
- inputs=[gr.Dropdown(["Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", "Gemma-2-27B-IT", "Gemma-2-27B"]), gr.Textbox()],
112
  outputs=gr.Textbox(),
113
  title="Storage Warehouse Customer Service Chatbot"
114
  )
 
1
+ from huggingface_hub import InferenceClient
2
  import os
3
  import sqlite3
4
  import requests
 
8
  from sentence_transformers import SentenceTransformer
9
  import gradio as gr
10
 
11
+ # Configure Hugging Face API URL and headers
12
+ model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
 
 
 
 
 
 
13
  huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
14
  headers = {"Authorization": f"Bearer {huggingface_api_key}"}
15
 
16
  # Function to query Hugging Face model
17
+ def query_huggingface(payload):
18
+ response = requests.post(f"https://api-inference.huggingface.co/models/{model_name}", headers=headers, json=payload)
19
  return response.json()
20
 
21
  # Function to extract text from PDF
 
85
  faiss_index, context_list = update_faiss_index()
86
 
87
  # Gradio interface for chatbot
88
+ def chatbot(question):
89
  relevant_contexts = retrieve_relevant_context(faiss_index, context_list, question)
90
  user_input = f"question: {question} context: {' '.join(relevant_contexts)}"
91
+ response = query_huggingface({"inputs": user_input})
92
  response_text = response[0].get("generated_text", "Sorry, I couldn't generate a response.") if isinstance(response, list) else response.get("generated_text", "Sorry, I couldn't generate a response.")
93
  return response_text
94
 
 
103
  # Gradio interface
104
  iface = gr.Interface(
105
  fn=chatbot,
106
+ inputs=gr.Textbox(),
107
  outputs=gr.Textbox(),
108
  title="Storage Warehouse Customer Service Chatbot"
109
  )