Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Commit
•
d745fdc
1
Parent(s):
173d79d
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import os
|
2 |
import sqlite3
|
3 |
import requests
|
@@ -7,20 +8,14 @@ import numpy as np
|
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
import gradio as gr
|
9 |
|
10 |
-
# Configure Hugging Face API
|
11 |
-
|
12 |
-
"Meta-Llama-3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct",
|
13 |
-
"Meta-Llama-3-8B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct",
|
14 |
-
"Gemma-2-27B-IT": "https://api-inference.huggingface.co/models/google/gemma-2-27b-it",
|
15 |
-
"Gemma-2-27B": "https://api-inference.huggingface.co/models/google/gemma-2-27b"
|
16 |
-
}
|
17 |
-
|
18 |
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
|
19 |
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
20 |
|
21 |
# Function to query Hugging Face model
|
22 |
-
def query_huggingface(
|
23 |
-
response = requests.post(
|
24 |
return response.json()
|
25 |
|
26 |
# Function to extract text from PDF
|
@@ -90,10 +85,10 @@ model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
90 |
faiss_index, context_list = update_faiss_index()
|
91 |
|
92 |
# Gradio interface for chatbot
|
93 |
-
def chatbot(
|
94 |
relevant_contexts = retrieve_relevant_context(faiss_index, context_list, question)
|
95 |
user_input = f"question: {question} context: {' '.join(relevant_contexts)}"
|
96 |
-
response = query_huggingface(
|
97 |
response_text = response[0].get("generated_text", "Sorry, I couldn't generate a response.") if isinstance(response, list) else response.get("generated_text", "Sorry, I couldn't generate a response.")
|
98 |
return response_text
|
99 |
|
@@ -108,7 +103,7 @@ def upload_pdf(file):
|
|
108 |
# Gradio interface
|
109 |
iface = gr.Interface(
|
110 |
fn=chatbot,
|
111 |
-
inputs=
|
112 |
outputs=gr.Textbox(),
|
113 |
title="Storage Warehouse Customer Service Chatbot"
|
114 |
)
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
2 |
import os
|
3 |
import sqlite3
|
4 |
import requests
|
|
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
import gradio as gr
|
10 |
|
11 |
+
# Configure Hugging Face API URL and headers
|
12 |
+
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
|
14 |
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
15 |
|
16 |
# Function to query Hugging Face model
|
17 |
+
def query_huggingface(payload):
|
18 |
+
response = requests.post(f"https://api-inference.huggingface.co/models/{model_name}", headers=headers, json=payload)
|
19 |
return response.json()
|
20 |
|
21 |
# Function to extract text from PDF
|
|
|
85 |
faiss_index, context_list = update_faiss_index()
|
86 |
|
87 |
# Gradio interface for chatbot
|
88 |
+
def chatbot(question):
|
89 |
relevant_contexts = retrieve_relevant_context(faiss_index, context_list, question)
|
90 |
user_input = f"question: {question} context: {' '.join(relevant_contexts)}"
|
91 |
+
response = query_huggingface({"inputs": user_input})
|
92 |
response_text = response[0].get("generated_text", "Sorry, I couldn't generate a response.") if isinstance(response, list) else response.get("generated_text", "Sorry, I couldn't generate a response.")
|
93 |
return response_text
|
94 |
|
|
|
103 |
# Gradio interface
|
104 |
iface = gr.Interface(
|
105 |
fn=chatbot,
|
106 |
+
inputs=gr.Textbox(),
|
107 |
outputs=gr.Textbox(),
|
108 |
title="Storage Warehouse Customer Service Chatbot"
|
109 |
)
|