Spaces:
Runtime error
Runtime error
File size: 11,695 Bytes
20f4396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
from flask import Flask, request, jsonify, render_template, session, url_for, redirect
from flask_wtf import FlaskForm
from flask_wtf import Form
from flask_bootstrap import Bootstrap
from wtforms import StringField, SubmitField, SelectField
import pickle
import joblib
import numpy as np
app = Flask(__name__, template_folder='templates')
app.config['SECRET_KEY'] = b'_5#y2L"F4Q8z\n\xec]/'
model = joblib.load('ensemble_model.pkl')
def return_prediction(model, input_json) :
input_data = [[input_json[k] for k in input_json.keys()]]
prediction = model.predict(input_data)[0]
return prediction
class PredictForm(FlaskForm):
age = StringField("Age")
gender = SelectField("Gender", choices=[('male', 'Male'), ('female', 'Female')])
annual_income = StringField("Annual Income")
marital_status = SelectField("Marital Status", choices=[('married', 'Married'), ('single', 'Single'), ('divorced', 'Divorced')])
dependents = StringField("Number of Dependents")
education_level = SelectField("Education Level", choices=[('high_school', "High School"), ('bachelors', "Bachelor's"), ("masters", "'Master's"), ('phd', "PHD")])
occupation = SelectField("Occupation", choices=[('unemployed', 'Unemployed'), ('self_employed', 'Self-Employed'), ('employed', 'Employed')])
health_score = StringField("Health Score")
location = SelectField("Location", choices=[('rural', 'Rural'), ('suburban', 'Suburban'), ('urban', 'Urban')])
policy_type = SelectField("Policy Type", choices=[('basic', 'Basic'), ('comprehensive', 'Comprehensive'), ('premium', 'Premium')])
previous_claims = StringField("Previous Claims")
vehicle_age = StringField("Vehicle Age (in years)")
credit_score = StringField("Credit Score")
insurance_duration = StringField("Insurance Duration")
customer_feedback = SelectField("Customer Feedback", choices=[('poor', 'Poor'), ('average', 'Average'), ('good', 'Good')])
smoking_status = SelectField("Smoking Status", choices=[('yes', 'Yes'), ('no', 'No')])
exercise_frequency = SelectField("Exercise Frequency", choices=[('rarely', 'Rarely'), ('monthly', 'Monthly'), ('weekly', 'Weekly'), ('daily', 'Daily')])
property_type = SelectField("Property Type", choices=[('apartment', 'Apartment'), ('condo', 'Condo'), ('house', 'House')])
year = StringField("Year")
day = StringField("Day (of the month)")
month = StringField("Month (1-12)")
month_name = ""
day_of_week = StringField("Day of the Week (1-7)")
contract_length = ""
income_per_dependent = ""
credit_score_insurance_duration = ""
health_risk_score = ""
credit_health_score = ""
health_age_interaction = ""
submit = SubmitField("Predict")
@app.route('/', methods=['GET', 'POST'])
def index():
form = PredictForm()
if form.validate_on_submit():
# age
session['age'] = form.age.data
# gender
if(form.gender.data == 'female'):
session['pronoun'] = 0
session['gender'] = 'Female'
else:
session['pronoun'] = 1
session['gender'] = 'Male'
# annual income
session['annual_income'] = form.annual_income.data
# marital status
if(form.marital_status.data == 'married'):
session['married'] = 0
session['marital_status'] = 'Married'
elif(form.marital_status.data == 'single'):
session['married'] = 2
session['marital_status'] = 'Single'
else:
session['married'] = 1
session['marital_status'] = 'Divorced'
# dependents
session['dependents'] = form.dependents.data
# education level
if(form.education_level.data == 'high_school'):
session['education'] = 0
session['education_level'] = 'High School'
elif(form.education_level.data == 'bachelors'):
session['education'] = 1
session['education_level'] = 'Bachelor\'s'
elif(form.education_level.data == 'masters'):
session['education'] = 2
session['education_level'] = 'Master\'s'
else:
session['education'] = 3
session['education_level'] = 'PHD'
# occupation
if(form.occupation.data == 'unemployed'):
session['occupation'] = 0
session['occupation_status'] = 'Unemployed'
elif(form.occupation.data == 'self_employed'):
session['occupation'] = 1
session['occupation_status'] = 'Self-Employed'
else:
session['occupation'] = 2
session['occupation_status'] = 'Employed'
# health score
session['health_score'] = form.health_score.data
# location
if(form.location.data == 'rural'):
session['place'] = 0
session['location'] = 'Rural'
elif(form.location.data == 'suburban'):
session['place'] = 1
session['location'] = 'Suburban'
else:
session['place'] = 2
session['location'] = 'Urban'
# policy type
if(form.policy_type.data == 'basic'):
session['policy_type'] = 0
session['policy'] = 'Basic'
elif(form.policy_type.data == 'comprehensive'):
session['policy_type'] = 1
session['policy'] = 'Comprehensive'
else:
session['policy_type'] = 2
session['policy'] = 'Premium'
# previous claims
session['previous_claims'] = form.previous_claims.data
# vehicle age
session['vehicle_age'] = form.vehicle_age.data
# credit score
session['credit_score'] = form.credit_score.data
# insurance duration
session['insurance_duration'] = form.insurance_duration.data
# customer feedback
if(form.customer_feedback.data == 'poor'):
session['feedback'] = 0
session['feedback_status'] = 'Poor'
elif(form.customer_feedback.data == 'average'):
session['feedback'] = 1
session['feedback_status'] = 'Average'
else:
session['feedback'] = 2
session['feedback_status'] = 'Good'
# smoking status
if(form.smoking_status.data == 'yes'):
session['smoke'] = 1
session['smoking_status'] = 'Yes'
else:
session['smoke'] = 0
session['smoking_status'] = 'No'
# exercise frequency
if(form.exercise_frequency.data == 'rarely'):
session['exercise'] = 0
session['exercise_frequency'] = 'Rarely'
elif(form.exercise_frequency.data == 'monthly'):
session['exercise'] = 1
session['exercise_frequency'] = 'Monthly'
elif(form.exercise_frequency.data == 'weekly'):
session['exercise'] = 2
session['exercise_frequency'] = 'Weekly'
else:
session['exercise'] = 3
session['exercise_frequency'] = 'Daily'
# property type
if(form.property_type.data == 'apartment'):
session['property'] = 0
session['property_type'] = 'Apartment'
elif(form.property_type.data == 'condo'):
session['property'] = 1
session['property_type'] = 'Condo'
else:
session['property'] = 2
session['property_type'] = 'House'
# year
session['year'] = form.year.data
# day
session['day'] = form.day.data
# month
session['month'] = form.month.data
session['month_name'] = form.month.data
# day of the week
session['day_of_week'] = form.day_of_week.data
# contract length
session['contract_length'] = 0
if(float(session['insurance_duration']) < 1):
session['contract_length'] = 0
elif(float(session['insurance_duration']) < 5):
session['contract_length'] = 1
else:
session['contract_length'] = 2
if(float(session['dependents']) == 0):
session['dependents'] = 1
# income per dependent
session['income_per_dependent'] = float(session['annual_income']) / float(session['dependents'])
# credit score insurance duration
session['credit_score_insurance_duration'] = float(session['credit_score']) * float(session['insurance_duration'])
# health risk score
session['health_risk_score'] = float(session['smoke']) + float(session['exercise']) - float(session['health_score']) / 20
# credit health score
session['credit_health_score'] = float(session['credit_score']) * float(session['health_score'])
# health age interaction
session['health_age_interaction'] = float(session['health_score']) * float(session['age'])
return redirect(url_for('predict'))
return render_template('index.html', form=form)
# return """
# <h1>Model Deployment</hjson>
# <p>Use a POST request to /predict to get a prediction of Premium Amount</p>
# <ul>
# <li>Annual Income</li>
# <li>Age</li>
# <li>Gender</li>
# <li>Dependents</li>
# </ul>
# """
@app.route('/predict')
def predict():
content = {}
content['Age'] = float(session['age'])
content['Gender'] = float(session['pronoun'])
content['Annual Income'] = float(session['annual_income'])
content['Marital Status'] = float(session['married'])
content['Number of Dependents'] = float(session['dependents'])
content['Education Level'] = float(session['education'])
content['Occupation'] = float(session['occupation'])
content['Health Score'] = float(session['health_score'])
content['Location'] = float(session['place'])
content['Policy Type'] = float(session['policy_type'])
content['Previous Claims'] = float(session['previous_claims'])
content['Vehicle Age'] = float(session['vehicle_age'])
content['Credit Score'] = float(session['credit_score'])
content['Insurance Duration'] = float(session['insurance_duration'])
content['Customer Feedback'] = float(session['feedback'])
content['Smoking Status'] = float(session['smoke'])
content['Exercise Frequency'] = float(session['exercise'])
content['Property Type'] = float(session['property'])
content['Year'] = float(session['year'])
content['Day'] = float(session['day'])
content['Month'] = float(session['month'])
content['Month Name'] = float(session['month_name'])
content['Day of the Week'] = float(session['day_of_week'])
content['contract length'] = float(session['contract_length'])
content['Income to Dependents Ratio'] = float(session['income_per_dependent'])
content['CreditScore_InsuranceDuration'] = float(session['credit_score_insurance_duration'])
content['Health_Risk_Score'] = float(session['health_risk_score'])
content['Credit_Health_Score'] = float(session['credit_health_score'])
content['Health_Age_Interaction'] = float(session['health_age_interaction'])
prediction = return_prediction(model, content)
prediction = np.expm1(prediction)
return render_template('prediction.html', prediction=prediction)
Bootstrap = Bootstrap(app)
if __name__ == '__main__':
app.run(debug=True) |