Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoTokenizer, AutoModel | |
import utils | |
class Inference: | |
def __init__(self, decoder_model_name, max_length=32): | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.tokenizer = AutoTokenizer.from_pretrained(decoder_model_name) | |
self.encoder_decoder_model = AutoModel.from_pretrained('armgabrielyan/video-summarization') | |
self.encoder_decoder_model.to(self.device) | |
self.max_length = max_length | |
def generate_text(self, video, encoder_model_name): | |
if isinstance(video, str): | |
pixel_values = utils.video2image_from_path(video, encoder_model_name) | |
else: | |
pixel_values = video | |
if not self.tokenizer.pad_token: | |
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'}) | |
self.encoder_decoder_model.decoder.resize_token_embeddings(len(self.tokenizer)) | |
generated_ids = self.encoder_decoder_model.generate(pixel_values.unsqueeze(0).to(self.device), max_length=self.max_length) | |
generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_text | |