from datetime import timedelta import gradio as gr from sentence_transformers import SentenceTransformer import torchvision from sklearn.metrics.pairwise import cosine_similarity import numpy as np from inference import Inference import utils encoder_model_name = 'google/vit-large-patch32-224-in21k' decoder_model_name = 'gpt2' frame_step = 300 inference = Inference( decoder_model_name=decoder_model_name, ) model = SentenceTransformer('all-mpnet-base-v2') def search_in_video(video, query): result = torchvision.io.read_video(video) video = result[0] video_fps = result[2]['video_fps'] video_segments = [ video[idx:idx + frame_step, :, :, :] for idx in range(0, video.shape[0], frame_step) ] generated_texts = [] for video_seg in video_segments: pixel_values = utils.video2image(video_seg, encoder_model_name) generated_text = inference.generate_text(pixel_values, encoder_model_name) generated_texts.append(generated_text) sentences = [query] + generated_texts sentence_embeddings = model.encode(sentences) similarities = cosine_similarity( [sentence_embeddings[0]], sentence_embeddings[1:] ) arg_sorted_similarities = np.argsort(similarities) ordered_similarity_scores = similarities[0][arg_sorted_similarities] best_video = video_segments[arg_sorted_similarities[0, -1]] torchvision.io.write_video('best.mp4', best_video, video_fps) total_frames = video.shape[0] video_frame_segs = [ [idx, min(idx + frame_step, total_frames)] for idx in range(0, total_frames, frame_step) ] ordered_start_ends = [] for [start, end] in video_frame_segs: td = timedelta(seconds=(start / video_fps)) s = round(td.total_seconds(), 2) td = timedelta(seconds=(end / video_fps)) e = round(td.total_seconds(), 2) ordered_start_ends.append(f'{s}:{e}') ordered_start_ends = np.array(ordered_start_ends)[arg_sorted_similarities] labels_to_scores = dict( zip(ordered_start_ends[0].tolist(), ordered_similarity_scores[0].tolist()) ) return 'best.mp4', labels_to_scores app = gr.Interface( fn=search_in_video, inputs=['video', 'text'], outputs=['video', gr.outputs.Label(num_top_classes=3, type='auto')], ) app.launch(share=True)