Spaces:
Runtime error
Runtime error
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.llms import OpenAI | |
import os | |
from glob import glob | |
import shutil | |
import gradio as gr | |
import git | |
git.Repo.clone_from("https://github.com/TheMITTech/shakespeare", "shakespeare") | |
files = glob("./shakespeare/**/*.html") | |
os.mkdir('./data') | |
destination_folder = './data/' | |
for html_file in files: | |
shutil.move(html_file, destination_folder + html_file.split("/")[-1]) | |
from langchain.document_loaders import BSHTMLLoader, DirectoryLoader | |
bshtml_dir_loader = DirectoryLoader('./data/', loader_cls=BSHTMLLoader) | |
data = bshtml_dir_loader.load() | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size = 1000, | |
chunk_overlap = 20, | |
length_function = len, | |
) | |
documents = text_splitter.split_documents(data) | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
embeddings = OpenAIEmbeddings() | |
from chromadb.segment.impl.vector.local_hnsw import HnswParams | |
from langchain.vectorstores import Chroma | |
persist_directory = "vector_db" | |
vectordb = Chroma.from_documents(documents=documents, embedding=embeddings, persist_directory=persist_directory) | |
vectordb.persist() | |
vectordb = None | |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings) | |
from langchain.chat_models import ChatOpenAI | |
llm = ChatOpenAI(temperature=0, model="gpt-4") | |
doc_retriever = vectordb.as_retriever() | |
from langchain.chains import RetrievalQA | |
shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever) | |
from langchain.utilities import SerpAPIWrapper | |
search = SerpAPIWrapper() | |
from langchain.agents import initialize_agent, Tool | |
from langchain.agents import AgentType | |
from langchain.tools import BaseTool | |
from langchain.llms import OpenAI | |
from langchain import LLMMathChain, SerpAPIWrapper | |
tools = [ | |
Tool( | |
name = "Shakespeare QA System", | |
func=shakespeare_qa.run, | |
description="useful for when you need to answer questions about Shakespeare's works. Input should be a fully formed question." | |
), | |
Tool( | |
name = "SERP API Search", | |
func=search.run, | |
description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question." | |
), | |
] | |
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) | |
def make_inference(query): | |
return(agent.run(query)) | |
if __name__ == "__main__": | |
gr.Interface( | |
make_inference, | |
[ | |
gr.inputs.Textbox(lines=2, label="Query"), | |
], | |
gr.outputs.Textbox(label="Response"), | |
title="Shakespeare", | |
description="Shakespeare is a tool that allows you to ask questions about Shakespeare.", | |
).launch() |