Spaces:
Runtime error
Runtime error
from transformers import pipeline, set_seed | |
import gradio as gr | |
import nltk | |
nltk.download('punkt') | |
classifier = pipeline('text-generation', model='arputtick/GPT_Neo_1.3B_eco_feminist_2') | |
set_seed(42) | |
def generate_text(text, gen_length): | |
gen_text = classifier(text, max_length=gen_length)[0]['generated_text'] | |
sentences = nltk.sent_tokenize(gen_text) | |
if sentences[-1][-1] == ".": | |
output = sentences | |
else: | |
output = sentences[:-1] | |
return " ".join(output) | |
Instructuction = "Browse the internet to download any unique image" | |
title="Eco-Feminist Text Generation" | |
description = "Start writing a peice of text in the input box\ | |
and see how well the text generation language model\ | |
is able to generate new text that uniquely completes your sentences." | |
article = """ | |
- Write a text in the input box and specify the length of text. | |
- Also you can select a quick example to continue. | |
- Click submit button to generate new text. | |
- Click clear button to try new text generation. | |
""" | |
# Gradio app design | |
interface = gr.Interface( | |
generate_text, | |
inputs = ['text', gr.Slider(20, 200, value=80, step=1)], | |
outputs='text', | |
title = title, | |
description = description, | |
article = article, | |
allow_flagging = "never", | |
#theme = "peach", | |
#live = False, | |
examples=[["Agriculture is very fundamental to", | |
50], ["I will tell a story about", | |
100]] | |
) | |
interface.launch() |