from transformers import pipeline, set_seed import gradio as gr import nltk nltk.download('punkt') classifier = pipeline('text-generation', model='arputtick/GPT_Neo_1.3B_eco_feminist_2') set_seed(42) def generate_text(text, gen_length): gen_text = classifier(text, max_length=gen_length)[0]['generated_text'] sentences = nltk.sent_tokenize(gen_text) if sentences[-1][-1] == ".": output = sentences else: output = sentences[:-1] return " ".join(output) Instructuction = "Browse the internet to download any unique image" title="Eco-Feminist Text Generation" description = "Start writing a peice of text in the input box\ and see how well the text generation language model\ is able to generate new text that uniquely completes your sentences." article = """ - Write a text in the input box and specify the length of text. - Also you can select a quick example to continue. - Click submit button to generate new text. - Click clear button to try new text generation. """ # Gradio app design interface = gr.Interface( generate_text, inputs = ['text', gr.Slider(20, 200, value=80, step=1)], outputs='text', title = title, description = description, article = article, allow_flagging = "never", #theme = "peach", #live = False, examples=[["Agriculture is very fundamental to", 50], ["I will tell a story about", 100]] ) interface.launch()