File size: 10,298 Bytes
1374326
 
0869b01
 
1374326
 
 
120d6b7
 
 
 
 
 
 
 
 
5b5bfee
120d6b7
5b5bfee
 
120d6b7
 
 
 
 
 
 
 
0869b01
1374326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120d6b7
 
0869b01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120d6b7
 
 
 
 
 
 
 
 
 
 
 
 
5b5bfee
120d6b7
 
 
 
 
 
 
 
0869b01
 
 
 
 
 
120d6b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b5bfee
 
120d6b7
 
 
5b5bfee
 
 
120d6b7
 
 
 
5b5bfee
120d6b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b5bfee
120d6b7
 
 
 
5b5bfee
 
120d6b7
 
 
 
 
5b5bfee
120d6b7
 
 
 
 
 
 
 
 
 
0869b01
 
 
120d6b7
 
 
0869b01
 
 
120d6b7
 
 
 
 
0869b01
 
120d6b7
 
 
 
 
 
 
 
 
 
0869b01
 
120d6b7
 
 
 
 
 
 
 
 
 
0869b01
 
 
 
120d6b7
0869b01
 
 
 
 
 
 
 
 
120d6b7
 
 
 
 
 
 
 
 
 
 
 
 
0869b01
 
 
 
 
 
 
 
 
 
 
 
 
 
1374326
 
933f3ac
1374326
933f3ac
 
 
e07cbe2
0869b01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import subprocess
import logging
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.cron import CronTrigger
from pytz import utc
from tabs.trades import (
    prepare_trades, 
    get_overall_trades, 
    get_overall_winning_trades,
    plot_trades_by_week,
    plot_winning_trades_by_week,
    plot_trade_details  
)
from tabs.tool_win import (
    get_tool_winning_rate,
    get_overall_winning_rate,
    plot_tool_winnings_overall,
    plot_tool_winnings_by_tool
)
from tabs.error import (
    get_error_data, 
    get_error_data_overall,
    plot_error_data,
    plot_tool_error_data,
    plot_week_error_data
)


def refresh_data():
    # Run the pull_data.py script and wait for it to finish
    try:
        result = subprocess.run(["python", "./scripts/pull_data.py"], check=True)
        logging.info("Script executed successfully: %s", result)
    except subprocess.CalledProcessError as e:
        logging.error("Failed to run script: %s", e)
        return  # Stop execution if the script fails

    # Reload dataframes
    try:
        global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df
        logging.info("Refreshing data...")
        tools_df = pd.read_csv("./data/tools.csv", low_memory=False)
        trades_df = pd.read_csv("./data/all_trades_profitability.csv")
        trades_df = prepare_trades(trades_df)
        error_df = get_error_data(tools_df=tools_df, inc_tools=INC_TOOLS)
        error_overall_df = get_error_data_overall(error_df=error_df)
        winning_rate_df = get_tool_winning_rate(tools_df=tools_df, inc_tools=INC_TOOLS)
        winning_rate_overall_df = get_overall_winning_rate(wins_df=winning_rate_df)
        trades_count_df = get_overall_trades(trades_df=trades_df)
        trades_winning_rate_df = get_overall_winning_trades(trades_df=trades_df)
        logging.info("Data refreshed.")
    except Exception as e:
        logging.error("Failed to refresh data: %s", e)

tools_df = pd.read_csv("./data/tools.csv", low_memory=False)
trades_df = pd.read_csv("./data/all_trades_profitability.csv")
trades_df = prepare_trades(trades_df)

demo = gr.Blocks()

INC_TOOLS = [
    'prediction-online', 
    'prediction-offline', 
    'claude-prediction-online', 
    'claude-prediction-offline', 
    'prediction-offline-sme',
    'prediction-online-sme',
    'prediction-request-rag',
    'prediction-request-reasoning',
    'prediction-url-cot-claude', 
    'prediction-request-rag-claude',
    'prediction-request-reasoning-claude'
]


# TOOLS DATA
error_df = get_error_data(
    tools_df=tools_df,
    inc_tools=INC_TOOLS
)
error_overall_df = get_error_data_overall(
    error_df=error_df
)
winning_rate_df = get_tool_winning_rate(
    tools_df=tools_df, 
    inc_tools=INC_TOOLS
)
winning_rate_overall_df = get_overall_winning_rate(
    wins_df=winning_rate_df
)
trades_count_df = get_overall_trades(
    trades_df=trades_df
)
trades_winning_rate_df = get_overall_winning_trades(
    trades_df=trades_df
)

with demo:
    gr.HTML("<h1>Olas Predict Actual Performance</h1>")
    gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.")

    with gr.Tabs():
        with gr.TabItem("🔥Trades Dashboard"):
            with gr.Row():
                gr.Markdown("# Plot of number of trades by week")
            with gr.Row():
                plot_trades_by_week = plot_trades_by_week(
                    trades_df=trades_count_df
                )
            with gr.Row():
                gr.Markdown("# Plot of winning trades by week")
            with gr.Row():
                plot_winning_trades_by_week = plot_winning_trades_by_week(
                    trades_df=trades_winning_rate_df
                )
            with gr.Row():
                gr.Markdown("# Plot of trade details")
            with gr.Row():
                trade_details_selector = gr.Dropdown(
                    label="Select a trade", 
                    choices=[
                        "mech calls",
                        "collateral amount",
                        "earnings",
                        "net earnings",
                        "ROI"
                    ],
                    value="mech calls"
                )
            with gr.Row():
                trade_details_plot = plot_trade_details(
                    trade_detail="mech calls",
                    trades_df=trades_df
                )
            
            def update_trade_details(trade_detail):
                return plot_trade_details(
                    trade_detail=trade_detail,
                    trades_df=trades_df
                )

            trade_details_selector.change(
                update_trade_details, 
                inputs=trade_details_selector, 
                outputs=trade_details_plot
            )

            with gr.Row():
                trade_details_selector
            with gr.Row():
                trade_details_plot

        with gr.TabItem("🚀 Tool Winning Dashboard"):
            with gr.Row():
                gr.Markdown("# Plot showing overall winning rate")

            with gr.Row():
                winning_selector = gr.Dropdown(
                    label="Select Metric", 
                    choices=['losses', 'wins', 'total_request', 'win_perc'], 
                    value='win_perc',
                )

            with gr.Row():
                winning_plot = plot_tool_winnings_overall(
                    wins_df=winning_rate_overall_df,
                    winning_selector="win_perc"
                )

            def update_tool_winnings_overall_plot(winning_selector):
                return plot_tool_winnings_overall(
                    wins_df=winning_rate_overall_df,
                    winning_selector=winning_selector
                )

            winning_selector.change(
                update_tool_winnings_overall_plot,
                inputs=winning_selector, 
                outputs=winning_plot
            )

            with gr.Row():
                winning_selector
            with gr.Row():
                winning_plot

            with gr.Row():
                gr.Markdown("# Plot showing winning rate by tool")
            
            with gr.Row():
                sel_tool = gr.Dropdown(
                    label="Select a tool", 
                    choices=INC_TOOLS, 
                    value=INC_TOOLS[0]
                )

            with gr.Row():
                plot_tool_win_rate = plot_tool_winnings_by_tool(
                    wins_df=winning_rate_df,
                    tool=INC_TOOLS[0]
                )

            def update_tool_winnings_by_tool_plot(tool):
                return plot_tool_winnings_by_tool(
                    wins_df=winning_rate_df,
                    tool=tool
                )

            sel_tool.change(
                update_tool_winnings_by_tool_plot,
                inputs=sel_tool, 
                outputs=plot_tool_win_rate
            )

            with gr.Row():
                sel_tool
            with gr.Row():
                plot_tool_win_rate

        with gr.TabItem("🏥 Tool Error Dashboard"):
            with gr.Row():
                gr.Markdown("# Plot showing overall error")
            with gr.Row():
                plot_error_data(
                    error_all_df=error_overall_df
                )
            with gr.Row():
                gr.Markdown("# Plot showing error by tool")
            with gr.Row():
                sel_tool = gr.Dropdown(
                    label="Select a tool", 
                    choices=INC_TOOLS, 
                    value=INC_TOOLS[0]
                )

            with gr.Row():
                plot_tool_error = plot_tool_error_data(
                    error_df=error_df,
                    tool=INC_TOOLS[0]
                )


            def update_tool_error_plot(tool):
                return plot_tool_error_data(
                    error_df=error_df,
                    tool=tool
                )

            sel_tool.change(
                update_tool_error_plot, 
                inputs=sel_tool, 
                outputs=plot_tool_error
            )
            with gr.Row():
                sel_tool
            with gr.Row():
                plot_tool_error

            with gr.Row():
                gr.Markdown("# Plot showing error by week")

            with gr.Row():
                choices = error_overall_df['request_month_year_week'].unique().tolist()
                # sort the choices by the latest week to be on the top
                choices = sorted(choices)
                sel_week = gr.Dropdown(
                    label="Select a week", 
                    choices=choices, 
                    value=choices[-1]
                    )

            with gr.Row():
                plot_week_error = plot_week_error_data(
                    error_df=error_df,
                    week=choices[-1]
                )

            def update_week_error_plot(selected_week):
                return plot_week_error_data(
                    error_df=error_df,
                    week=selected_week
                )

            sel_tool.change(update_tool_error_plot, inputs=sel_tool, outputs=plot_tool_error)
            sel_week.change(update_week_error_plot, inputs=sel_week, outputs=plot_week_error)

            with gr.Row():
                sel_tool
            with gr.Row():
                plot_tool_error
            with gr.Row():
                sel_week
            with gr.Row():
                plot_week_error

        with gr.TabItem("ℹ️ About"):
            with gr.Accordion("About the Benchmark"):
                gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.")

# Create the scheduler
scheduler = BackgroundScheduler(timezone=utc)
scheduler.add_job(refresh_data, CronTrigger(hour=0, minute=0))  # Runs daily at 12 AM UTC
scheduler.start()
# scheduler = BackgroundScheduler(timezone=utc)
# scheduler.add_job(refresh_data, CronTrigger(hour='*'))  # Runs every hour
# scheduler.start()

demo.queue(default_concurrency_limit=40).launch()