Spaces:
Sleeping
Sleeping
File size: 12,925 Bytes
0994464 9adc69d 85c4fe0 8e71274 85c4fe0 9adc69d 85c4fe0 d2c6fd5 7664936 c4968c3 7664936 0994464 7664936 0994464 7664936 c4968c3 85c4fe0 ed9ad5e 8e71274 918a154 85c4fe0 8e71274 85c4fe0 8e71274 85c4fe0 918a154 0994464 85c4fe0 8e71274 d8f4e8d 85c4fe0 d8f4e8d ed9ad5e 85c4fe0 d8f4e8d 85c4fe0 d8f4e8d 85c4fe0 8e71274 85c4fe0 8e71274 85c4fe0 8e71274 85c4fe0 8e71274 85c4fe0 8e71274 85c4fe0 8e71274 ed9ad5e 85c4fe0 d8f4e8d 85c4fe0 918a154 85c4fe0 d8f4e8d 85c4fe0 d8f4e8d 918a154 85c4fe0 8e71274 85c4fe0 918a154 8e71274 85c4fe0 8e71274 85c4fe0 8e71274 85c4fe0 918a154 85c4fe0 8e71274 85c4fe0 d8f4e8d 85c4fe0 ed9ad5e 85c4fe0 8e71274 85c4fe0 918a154 85c4fe0 d8f4e8d ed9ad5e 918a154 85c4fe0 ed9ad5e 85c4fe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gdown
from dotenv import load_dotenv
import datetime
import openai
import uuid
import gradio as gr
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import RetrievalQA
import os
from langchain.chat_models import ChatOpenAI
from langchain import OpenAI
from langchain.document_loaders import WebBaseLoader, TextLoader, Docx2txtLoader, PyMuPDFLoader
from whatsapp_chat_custom import WhatsAppChatLoader # use this instead of from langchain.document_loaders import WhatsAppChatLoader
from collections import deque
import re
from bs4 import BeautifulSoup
import requests
from urllib.parse import urlparse
import mimetypes
from pathlib import Path
import tiktoken
from ttyd_functions import *
from ttyd_consts import *
###############################################################################################
load_dotenv()
# select the mode at runtime when starting container - modes options are in ttyd_consts.py
if (os.getenv("TTYD_MODE",'')).split('_')[0]=='personalBot':
mode = mode_arslan
gDriveUrl = (os.getenv("GDRIVE_FOLDER_URL",'')).replace('?usp=sharing','')
# output folder of googe drive folder will be taken as input dir of personalBot
gdown.download_folder(url=gDriveUrl, output=mode.inputDir, quiet=True)
if os.getenv("TTYD_MODE",'')!='personalBot_arslan':
mode.title=''
mode.welcomeMsg=''
elif os.getenv("TTYD_MODE",'')=='nustian':
mode = mode_nustian
else:
mode = mode_general
if mode.type!='userInputDocs':
# local vector store as opposed to gradio state vector store
vsDict_hard = localData_vecStore(os.getenv("OPENAI_API_KEY"), inputDir=mode.inputDir, file_list=mode.file_list, url_list=mode.url_list)
###############################################################################################
# Gradio
###############################################################################################
# initialize chatbot function sets the QA Chain, and also sets/updates any other components to start chatting. updateQaChain function only updates QA chain and will be called whenever Adv Settings are updated.
def initializeChatbot(temp, k, modelName, stdlQs, api_key_st, vsDict_st, progress=gr.Progress()):
progress(0.1, waitText_initialize)
qa_chain_st = updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st)
progress(0.5, waitText_initialize)
#generate welcome message
if mode.welcomeMsg:
welMsg = mode.welcomeMsg
else:
welMsg = qa_chain_st({'question': initialize_prompt, 'chat_history':[]})['answer']
print('Chatbot initialized at ', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
return qa_chain_st, btn.update(interactive=True), initChatbot_btn.update('Chatbot ready. Now visit the chatbot Tab.', interactive=False)\
, oaiKey_tb.update(), gr.Tabs.update(selected='cb'), chatbot.update(value=[('', welMsg)])
def setOaiApiKey(api_key):
api_key = transformApi(api_key)
try:
openai.Model.list(api_key=api_key) # test the API key
api_key_st = api_key
return oaiKey_tb.update('API Key accepted', interactive=False, type='text'), oaiKey_btn.update(interactive=False), api_key_st
except Exception as e:
return oaiKey_tb.update(str(e), type='text'), *[x.update() for x in [oaiKey_btn, api_key_state]]
# convert user uploaded data to vectorstore
def uiData_vecStore(userFiles, userUrls, api_key_st, vsDict_st={}, progress=gr.Progress()):
opComponents = [data_ingest_btn, upload_fb, urls_tb]
# parse user data
file_paths = []
documents = []
if userFiles is not None:
if not isinstance(userFiles, list): userFiles = [userFiles]
file_paths = [file.name for file in userFiles]
userUrls = [x.strip() for x in userUrls.split(",")] if userUrls else []
#create documents
documents = data_ingestion(file_list=file_paths, url_list=userUrls, prog=progress)
if documents:
for file in file_paths:
os.remove(file)
else:
return {}, '', *[x.update() for x in opComponents]
# Splitting and Chunks
docs = split_docs(documents)
# Embeddings
try:
openai.Model.list(api_key=api_key_st) # test the API key
embeddings = OpenAIEmbeddings(openai_api_key=api_key_st)
except Exception as e:
return {}, str(e), *[x.update() for x in opComponents]
progress(0.5, 'Creating Vector Database')
vsDict_st = getVsDict(embeddings, docs, vsDict_st)
# get sources from metadata
src_str = getSourcesFromMetadata(vsDict_st['chromaClient'].get()['metadatas'])
src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0]
progress(1, 'Data loaded')
return vsDict_st, src_str, *[x.update(interactive=False) for x in [data_ingest_btn, upload_fb]], urls_tb.update(interactive=False, placeholder='')
# just update the QA Chain, no updates to any UI
def updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st):
# if we are not adding data from ui, then use vsDict_hard as vectorstore
if vsDict_st=={} and mode.type!='userInputDocs': vsDict_st=vsDict_hard
modelName = modelName.split('(')[0].strip() # so we can provide any info in brackets
# check if the input model is chat model or legacy model
try:
ChatOpenAI(openai_api_key=api_key_st, temperature=0,model_name=modelName,max_tokens=1).predict('')
llm = ChatOpenAI(openai_api_key=api_key_st, temperature=float(temp),model_name=modelName)
except:
OpenAI(openai_api_key=api_key_st, temperature=0,model_name=modelName,max_tokens=1).predict('')
llm = OpenAI(openai_api_key=api_key_st, temperature=float(temp),model_name=modelName)
# settingsUpdated = 'Settings updated:'+ ' Model=' + modelName + ', Temp=' + str(temp)+ ', k=' + str(k)
# gr.Info(settingsUpdated)
# Now create QA Chain using the LLM
if stdlQs==0: # 0th index i.e. first option
qa_chain_st = RetrievalQA.from_llm(
llm=llm,
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}),
return_source_documents=True,
input_key = 'question', output_key='answer' # to align with ConversationalRetrievalChain for downstream functions
)
else:
rephQs = False if stdlQs==1 else True
qa_chain_st = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}),
rephrase_question=rephQs,
return_source_documents=True,
return_generated_question=True
)
return qa_chain_st
def respond(message, chat_history, qa_chain):
result = qa_chain({'question': message, "chat_history": [tuple(x) for x in chat_history]})
src_docs = getSourcesFromMetadata([x.metadata for x in result["source_documents"]], sourceOnly=False)[0]
# streaming
streaming_answer = ""
for ele in "".join(result['answer']):
streaming_answer += ele
yield "", chat_history + [(message, streaming_answer)], src_docs, btn.update('Please wait...', interactive=False)
chat_history.extend([(message, result['answer'])])
yield "", chat_history, src_docs, btn.update('Send Message', interactive=True)
#####################################################################################################
with gr.Blocks(theme=gr.themes.Default(primary_hue='orange', secondary_hue='gray', neutral_hue='blue'), css="footer {visibility: hidden}") as demo:
# Initialize state variables - stored in this browser session - these can only be used within input or output of .click/.submit etc, not as a python var coz they are not stored in backend, only as a frontend gradio component
# but if you initialize it with a default value, that value will be stored in backend and accessible across all users. You can also change it with statear.value='newValue'
qa_state = gr.State()
api_key_state = gr.State(getPersonalBotApiKey() if mode.type=='personalBot' else 'Null') # can be string (OpenAI) or dict (WX)
chromaVS_state = gr.State({})
# Setup the Gradio Layout
gr.Markdown(mode.title)
with gr.Tabs() as tabs:
with gr.Tab('Initialization', id='init'):
with gr.Row():
with gr.Column():
oaiKey_tb = gr.Textbox(label="OpenAI API Key", type='password'\
, info='You can find OpenAI API key at https://platform.openai.com/account/api-keys'\
, placeholder='Enter your API key here and hit enter to begin chatting')
oaiKey_btn = gr.Button("Submit API Key")
with gr.Row(visible=mode.uiAddDataVis):
upload_fb = gr.Files(scale=5, label="Upload (multiple) Files - pdf/txt/docx supported", file_types=['.doc', '.docx', 'text', '.pdf', '.csv'])
urls_tb = gr.Textbox(scale=5, label="Enter URLs starting with https (comma separated)"\
, info=url_tb_info\
, placeholder=url_tb_ph)
data_ingest_btn = gr.Button("Load Data")
status_tb = gr.TextArea(label='Status bar', show_label=False, visible=mode.uiAddDataVis)
initChatbot_btn = gr.Button("Initialize Chatbot", variant="primary")
with gr.Tab('Chatbot', id='cb'):
with gr.Row():
chatbot = gr.Chatbot(label="Chat History", scale=2)
srcDocs = gr.TextArea(label="References")
msg = gr.Textbox(label="User Input",placeholder="Type your questions here")
with gr.Row():
btn = gr.Button("Send Message", interactive=False, variant="primary")
clear = gr.ClearButton(components=[msg, chatbot, srcDocs], value="Clear chat history")
# exp_comp = gr.Dataset(scale=0.7, samples=[['123'],['456'], ['123'],['456'],['456']], components=[msg], label='Examples (auto generated by LLM)', visible=False)
# gr.Examples(examples=exps, inputs=msg)
with gr.Accordion("Advance Settings - click to expand", open=False):
with gr.Row():
with gr.Column():
temp_sld = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", info='Sampling temperature to use when calling LLM. Defaults to 0.7')
k_sld = gr.Slider(minimum=1, maximum=10, step=1, value=mode.k, label="K", info='Number of relavant documents to return from Vector Store. Defaults to 4')
model_dd = gr.Dropdown(label='Model Name'\
, choices=model_dd_choices\
, value=model_dd_choices[0], allow_custom_value=True\
, info=model_dd_info)
stdlQs_rb = gr.Radio(label='Standalone Question', info=stdlQs_rb_info\
, type='index', value=stdlQs_rb_choices[1]\
, choices=stdlQs_rb_choices)
### Setup the Gradio Event Listeners
# API button
oaiKey_btn_args = {'fn':setOaiApiKey, 'inputs':[oaiKey_tb], 'outputs':[oaiKey_tb, oaiKey_btn, api_key_state]}
oaiKey_btn.click(**oaiKey_btn_args)
oaiKey_tb.submit(**oaiKey_btn_args)
# Data Ingest Button
data_ingest_event = data_ingest_btn.click(uiData_vecStore, [upload_fb, urls_tb, api_key_state, chromaVS_state], [chromaVS_state, status_tb, data_ingest_btn, upload_fb, urls_tb])
# Adv Settings
advSet_args = {'fn':updateQaChain, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state]}
temp_sld.release(**advSet_args)
k_sld.release(**advSet_args)
model_dd.change(**advSet_args)
stdlQs_rb.change(**advSet_args)
# Initialize button
initCb_args = {'fn':initializeChatbot, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state, btn, initChatbot_btn, oaiKey_tb, tabs, chatbot]}
if mode.type=='personalBot':
demo.load(**initCb_args) # load Chatbot UI directly on startup
initChatbot_btn.click(**initCb_args)
# Chatbot submit button
chat_btn_args = {'fn':respond, 'inputs':[msg, chatbot, qa_state], 'outputs':[msg, chatbot, srcDocs, btn]}
btn.click(**chat_btn_args)
msg.submit(**chat_btn_args)
demo.queue(concurrency_count=10)
demo.launch(show_error=True) |