|
import gradio as gr |
|
from transformers import pipeline |
|
import spacy |
|
from docx import Document |
|
import tempfile |
|
import os |
|
import torch |
|
try: |
|
nlp = spacy.load('en_core_web_sm') |
|
except IOError: |
|
import subprocess |
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) |
|
nlp = spacy.load('en_core_web_sm') |
|
|
|
|
|
|
|
|
|
device = 0 if torch.cuda.is_available() else -1 |
|
fill_mask = pipeline("fill-mask", model="bert-base-uncased", device=device) |
|
|
|
|
|
def extract_text_from_docx(file_path): |
|
try: |
|
doc = Document(file_path) |
|
return '\n'.join([para.text for para in doc.paragraphs]) |
|
except: |
|
return "" |
|
|
|
def save_updated_resume(text): |
|
try: |
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.docx') |
|
doc = Document() |
|
for line in text.split('\n'): |
|
doc.add_paragraph(line) |
|
doc.save(temp_file.name) |
|
return temp_file.name |
|
except: |
|
return None |
|
|
|
def bert_suggest_replacements(text): |
|
suggestions = [] |
|
improved_text = text |
|
doc = nlp(text) |
|
|
|
for token in doc: |
|
if token.is_stop or not token.is_alpha or len(token.text) <= 3: |
|
continue |
|
|
|
masked_sentence = improved_text.replace(token.text, "[MASK]", 1) |
|
try: |
|
predictions = fill_mask(masked_sentence) |
|
best_suggestion = predictions[0]['token_str'] |
|
|
|
if best_suggestion != token.text.lower(): |
|
improved_text = improved_text.replace(token.text, best_suggestion, 1) |
|
suggestions.append(f"• Replace '{token.text}' with '{best_suggestion}'") |
|
except: |
|
continue |
|
|
|
return improved_text, suggestions |
|
|
|
def process_resume(file): |
|
if file is None: |
|
return "Please upload a resume file.", "No suggestions yet.", None |
|
|
|
try: |
|
resume_text = extract_text_from_docx(file.name) |
|
if not resume_text: |
|
return "Could not read the resume. Please ensure it's a valid .docx file.", "No suggestions available.", None |
|
|
|
updated_text, suggestions = bert_suggest_replacements(resume_text) |
|
output_file_path = save_updated_resume(updated_text) |
|
|
|
suggestions_text = "Suggested Improvements:\n" + '\n'.join(suggestions) if suggestions else "No improvements suggested. Your resume looks good!" |
|
|
|
return updated_text, suggestions_text, output_file_path |
|
except: |
|
return "An error occurred. Please try again with a different file.", "No suggestions available.", None |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_resume, |
|
inputs=gr.File(label="Upload Your Resume (.docx only)", file_types=[".docx"]), |
|
outputs=[ |
|
gr.Textbox(label="Optimized Resume Text", lines=10), |
|
gr.Textbox(label="ATS Improvement Suggestions", lines=10), |
|
gr.File(label="Download Optimized Resume") |
|
], |
|
title="ATS Resume Optimizer", |
|
description="Upload your .docx resume for ATS optimization. We'll suggest improvements and provide an updated version.", |
|
theme="default", |
|
css=""" |
|
.gradio-container {max-width: 800px; margin: auto;} |
|
.output-markdown {white-space: pre-wrap;} |
|
""" |
|
) |
|
|
|
iface.launch(share=True) |
|
|
|
|