Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,73 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from PIL import Image, ImageDraw, ImageFont
|
3 |
-
|
4 |
-
|
5 |
-
# Use a pipeline as a high-level helper
|
6 |
-
from transformers import pipeline
|
7 |
-
|
8 |
-
# model_path = ("../Models/models--facebook--detr-resnet-50/snapshots"
|
9 |
-
# "/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b")
|
10 |
-
|
11 |
-
object_detector = pipeline("object-detection",
|
12 |
-
model="facebook/detr-resnet-50")
|
13 |
-
|
14 |
-
# object_detector = pipeline("object-detection",
|
15 |
-
# model=model_path)
|
16 |
-
|
17 |
-
|
18 |
-
def draw_bounding_boxes(image, detections, font_path=None, font_size=20):
|
19 |
-
# Make a copy of the image to draw on
|
20 |
-
draw_image = image.copy()
|
21 |
-
draw = ImageDraw.Draw(draw_image)
|
22 |
-
|
23 |
-
# Load custom font or default font if path not provided
|
24 |
-
if font_path:
|
25 |
-
font = ImageFont.truetype(font_path, font_size)
|
26 |
-
else:
|
27 |
-
# When font_path is not provided, load default font but it's size is fixed
|
28 |
-
font = ImageFont.load_default()
|
29 |
-
# Increase font size workaround by using a TTF font file, if needed, can download and specify the path
|
30 |
-
|
31 |
-
for detection in detections:
|
32 |
-
box = detection['box']
|
33 |
-
xmin = box['xmin']
|
34 |
-
ymin = box['ymin']
|
35 |
-
xmax = box['xmax']
|
36 |
-
ymax = box['ymax']
|
37 |
-
|
38 |
-
# Draw the bounding box
|
39 |
-
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
|
40 |
-
|
41 |
-
# Optionally, you can also draw the label and score
|
42 |
-
label = detection['label']
|
43 |
-
score = detection['score']
|
44 |
-
text = f"{label} {score:.2f}"
|
45 |
-
|
46 |
-
# Draw text with background rectangle for visibility
|
47 |
-
if font_path: # Use the custom font with increased size
|
48 |
-
text_size = draw.textbbox((xmin, ymin), text, font=font)
|
49 |
-
else:
|
50 |
-
# Calculate text size using the default font
|
51 |
-
text_size = draw.textbbox((xmin, ymin), text)
|
52 |
-
|
53 |
-
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
|
54 |
-
draw.text((xmin, ymin), text, fill="white", font=font)
|
55 |
-
|
56 |
-
return draw_image
|
57 |
-
|
58 |
-
|
59 |
-
def detect_object(image):
|
60 |
-
raw_image = image
|
61 |
-
lst=[]
|
62 |
-
output = object_detector(raw_image)
|
63 |
-
for i in output:
|
64 |
-
lst.append(i['label'])
|
65 |
-
processed_image = draw_bounding_boxes(raw_image, output)
|
66 |
-
return processed_image,lst
|
67 |
-
|
68 |
-
demo = gr.Interface(fn=detect_object,
|
69 |
-
inputs=[gr.Image(label="Select Image",type="pil")],
|
70 |
-
outputs=[gr.Image(label="Processed Image", type="pil"),gr.Textbox(label="Objcts", lines=3),],
|
71 |
-
title="
|
72 |
-
description="THIS APPLICATION WILL BE USED TO DETECT OBJECTS INSIDE THE PROVIDED INPUT IMAGE.")
|
73 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
|
4 |
+
|
5 |
+
# Use a pipeline as a high-level helper
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# model_path = ("../Models/models--facebook--detr-resnet-50/snapshots"
|
9 |
+
# "/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b")
|
10 |
+
|
11 |
+
object_detector = pipeline("object-detection",
|
12 |
+
model="facebook/detr-resnet-50")
|
13 |
+
|
14 |
+
# object_detector = pipeline("object-detection",
|
15 |
+
# model=model_path)
|
16 |
+
|
17 |
+
|
18 |
+
def draw_bounding_boxes(image, detections, font_path=None, font_size=20):
|
19 |
+
# Make a copy of the image to draw on
|
20 |
+
draw_image = image.copy()
|
21 |
+
draw = ImageDraw.Draw(draw_image)
|
22 |
+
|
23 |
+
# Load custom font or default font if path not provided
|
24 |
+
if font_path:
|
25 |
+
font = ImageFont.truetype(font_path, font_size)
|
26 |
+
else:
|
27 |
+
# When font_path is not provided, load default font but it's size is fixed
|
28 |
+
font = ImageFont.load_default()
|
29 |
+
# Increase font size workaround by using a TTF font file, if needed, can download and specify the path
|
30 |
+
|
31 |
+
for detection in detections:
|
32 |
+
box = detection['box']
|
33 |
+
xmin = box['xmin']
|
34 |
+
ymin = box['ymin']
|
35 |
+
xmax = box['xmax']
|
36 |
+
ymax = box['ymax']
|
37 |
+
|
38 |
+
# Draw the bounding box
|
39 |
+
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
|
40 |
+
|
41 |
+
# Optionally, you can also draw the label and score
|
42 |
+
label = detection['label']
|
43 |
+
score = detection['score']
|
44 |
+
text = f"{label} {score:.2f}"
|
45 |
+
|
46 |
+
# Draw text with background rectangle for visibility
|
47 |
+
if font_path: # Use the custom font with increased size
|
48 |
+
text_size = draw.textbbox((xmin, ymin), text, font=font)
|
49 |
+
else:
|
50 |
+
# Calculate text size using the default font
|
51 |
+
text_size = draw.textbbox((xmin, ymin), text)
|
52 |
+
|
53 |
+
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
|
54 |
+
draw.text((xmin, ymin), text, fill="white", font=font)
|
55 |
+
|
56 |
+
return draw_image
|
57 |
+
|
58 |
+
|
59 |
+
def detect_object(image):
|
60 |
+
raw_image = image
|
61 |
+
lst=[]
|
62 |
+
output = object_detector(raw_image)
|
63 |
+
for i in output:
|
64 |
+
lst.append(i['label'])
|
65 |
+
processed_image = draw_bounding_boxes(raw_image, output)
|
66 |
+
return processed_image,lst
|
67 |
+
|
68 |
+
demo = gr.Interface(fn=detect_object,
|
69 |
+
inputs=[gr.Image(label="Select Image",type="pil")],
|
70 |
+
outputs=[gr.Image(label="Processed Image", type="pil"),gr.Textbox(label="Objcts", lines=3),],
|
71 |
+
title="Object Detector",
|
72 |
+
description="THIS APPLICATION WILL BE USED TO DETECT OBJECTS INSIDE THE PROVIDED INPUT IMAGE / Live FEED .")
|
73 |
demo.launch()
|