arssite commited on
Commit
8bcbe28
·
verified ·
1 Parent(s): c358feb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -72
app.py CHANGED
@@ -1,73 +1,73 @@
1
- import gradio as gr
2
- from PIL import Image, ImageDraw, ImageFont
3
-
4
-
5
- # Use a pipeline as a high-level helper
6
- from transformers import pipeline
7
-
8
- # model_path = ("../Models/models--facebook--detr-resnet-50/snapshots"
9
- # "/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b")
10
-
11
- object_detector = pipeline("object-detection",
12
- model="facebook/detr-resnet-50")
13
-
14
- # object_detector = pipeline("object-detection",
15
- # model=model_path)
16
-
17
-
18
- def draw_bounding_boxes(image, detections, font_path=None, font_size=20):
19
- # Make a copy of the image to draw on
20
- draw_image = image.copy()
21
- draw = ImageDraw.Draw(draw_image)
22
-
23
- # Load custom font or default font if path not provided
24
- if font_path:
25
- font = ImageFont.truetype(font_path, font_size)
26
- else:
27
- # When font_path is not provided, load default font but it's size is fixed
28
- font = ImageFont.load_default()
29
- # Increase font size workaround by using a TTF font file, if needed, can download and specify the path
30
-
31
- for detection in detections:
32
- box = detection['box']
33
- xmin = box['xmin']
34
- ymin = box['ymin']
35
- xmax = box['xmax']
36
- ymax = box['ymax']
37
-
38
- # Draw the bounding box
39
- draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
40
-
41
- # Optionally, you can also draw the label and score
42
- label = detection['label']
43
- score = detection['score']
44
- text = f"{label} {score:.2f}"
45
-
46
- # Draw text with background rectangle for visibility
47
- if font_path: # Use the custom font with increased size
48
- text_size = draw.textbbox((xmin, ymin), text, font=font)
49
- else:
50
- # Calculate text size using the default font
51
- text_size = draw.textbbox((xmin, ymin), text)
52
-
53
- draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
54
- draw.text((xmin, ymin), text, fill="white", font=font)
55
-
56
- return draw_image
57
-
58
-
59
- def detect_object(image):
60
- raw_image = image
61
- lst=[]
62
- output = object_detector(raw_image)
63
- for i in output:
64
- lst.append(i['label'])
65
- processed_image = draw_bounding_boxes(raw_image, output)
66
- return processed_image,lst
67
-
68
- demo = gr.Interface(fn=detect_object,
69
- inputs=[gr.Image(label="Select Image",type="pil")],
70
- outputs=[gr.Image(label="Processed Image", type="pil"),gr.Textbox(label="Objcts", lines=3),],
71
- title="@GenAILearniverse Project 6: Object Detector",
72
- description="THIS APPLICATION WILL BE USED TO DETECT OBJECTS INSIDE THE PROVIDED INPUT IMAGE.")
73
  demo.launch()
 
1
+ import gradio as gr
2
+ from PIL import Image, ImageDraw, ImageFont
3
+
4
+
5
+ # Use a pipeline as a high-level helper
6
+ from transformers import pipeline
7
+
8
+ # model_path = ("../Models/models--facebook--detr-resnet-50/snapshots"
9
+ # "/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b")
10
+
11
+ object_detector = pipeline("object-detection",
12
+ model="facebook/detr-resnet-50")
13
+
14
+ # object_detector = pipeline("object-detection",
15
+ # model=model_path)
16
+
17
+
18
+ def draw_bounding_boxes(image, detections, font_path=None, font_size=20):
19
+ # Make a copy of the image to draw on
20
+ draw_image = image.copy()
21
+ draw = ImageDraw.Draw(draw_image)
22
+
23
+ # Load custom font or default font if path not provided
24
+ if font_path:
25
+ font = ImageFont.truetype(font_path, font_size)
26
+ else:
27
+ # When font_path is not provided, load default font but it's size is fixed
28
+ font = ImageFont.load_default()
29
+ # Increase font size workaround by using a TTF font file, if needed, can download and specify the path
30
+
31
+ for detection in detections:
32
+ box = detection['box']
33
+ xmin = box['xmin']
34
+ ymin = box['ymin']
35
+ xmax = box['xmax']
36
+ ymax = box['ymax']
37
+
38
+ # Draw the bounding box
39
+ draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
40
+
41
+ # Optionally, you can also draw the label and score
42
+ label = detection['label']
43
+ score = detection['score']
44
+ text = f"{label} {score:.2f}"
45
+
46
+ # Draw text with background rectangle for visibility
47
+ if font_path: # Use the custom font with increased size
48
+ text_size = draw.textbbox((xmin, ymin), text, font=font)
49
+ else:
50
+ # Calculate text size using the default font
51
+ text_size = draw.textbbox((xmin, ymin), text)
52
+
53
+ draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
54
+ draw.text((xmin, ymin), text, fill="white", font=font)
55
+
56
+ return draw_image
57
+
58
+
59
+ def detect_object(image):
60
+ raw_image = image
61
+ lst=[]
62
+ output = object_detector(raw_image)
63
+ for i in output:
64
+ lst.append(i['label'])
65
+ processed_image = draw_bounding_boxes(raw_image, output)
66
+ return processed_image,lst
67
+
68
+ demo = gr.Interface(fn=detect_object,
69
+ inputs=[gr.Image(label="Select Image",type="pil")],
70
+ outputs=[gr.Image(label="Processed Image", type="pil"),gr.Textbox(label="Objcts", lines=3),],
71
+ title="Object Detector",
72
+ description="THIS APPLICATION WILL BE USED TO DETECT OBJECTS INSIDE THE PROVIDED INPUT IMAGE / Live FEED .")
73
  demo.launch()