import gradio as gr from PIL import Image, ImageDraw, ImageFont # Use a pipeline as a high-level helper from transformers import pipeline # model_path = ("../Models/models--facebook--detr-resnet-50/snapshots" # "/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b") object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") # object_detector = pipeline("object-detection", # model=model_path) def draw_bounding_boxes(image, detections, font_path=None, font_size=20): # Make a copy of the image to draw on draw_image = image.copy() draw = ImageDraw.Draw(draw_image) # Load custom font or default font if path not provided if font_path: font = ImageFont.truetype(font_path, font_size) else: # When font_path is not provided, load default font but it's size is fixed font = ImageFont.load_default() # Increase font size workaround by using a TTF font file, if needed, can download and specify the path for detection in detections: box = detection['box'] xmin = box['xmin'] ymin = box['ymin'] xmax = box['xmax'] ymax = box['ymax'] # Draw the bounding box draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3) # Optionally, you can also draw the label and score label = detection['label'] score = detection['score'] text = f"{label} {score:.2f}" # Draw text with background rectangle for visibility if font_path: # Use the custom font with increased size text_size = draw.textbbox((xmin, ymin), text, font=font) else: # Calculate text size using the default font text_size = draw.textbbox((xmin, ymin), text) draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red") draw.text((xmin, ymin), text, fill="white", font=font) return draw_image def detect_object(image): raw_image = image lst=[] output = object_detector(raw_image) for i in output: lst.append(i['label']) processed_image = draw_bounding_boxes(raw_image, output) return processed_image,lst demo = gr.Interface(fn=detect_object, inputs=[gr.Image(label="Select Image",type="pil")], outputs=[gr.Image(label="Processed Image", type="pil"),gr.Textbox(label="Objcts", lines=3),], title="@GenAILearniverse Project 6: Object Detector", description="THIS APPLICATION WILL BE USED TO DETECT OBJECTS INSIDE THE PROVIDED INPUT IMAGE.") demo.launch()