Spaces:
Runtime error
Runtime error
File size: 11,064 Bytes
07b8c5e cb4574c 07b8c5e fee6732 639b7e1 8e85047 cb4574c 07b8c5e 9c246bf 0904b62 9c246bf af35943 9c246bf d226d4e d4f55c7 90cb8f1 505b2aa cb4574c 90cb8f1 cb4574c 07b8c5e 90cb8f1 cb4574c 90cb8f1 1b8146c 90cb8f1 cb4574c 90cb8f1 cb4574c 90cb8f1 cb4574c 90cb8f1 cb4574c 07b8c5e bd32e71 aa7ff49 bd32e71 404edfc bd32e71 d4f55c7 bd32e71 ffc1008 bd32e71 404edfc bd32e71 2385d22 bd32e71 404edfc 08e5b6d 54b2d3b 08e5b6d 54b2d3b 08e5b6d 54b2d3b 08e5b6d 54b2d3b 08e5b6d 07b8c5e 860569f 07b8c5e ddf5341 07b8c5e 7240ddc ddf5341 07b8c5e ddf5341 07b8c5e ddf5341 07b8c5e 5f9b2c5 86f908d f39f62b 86f908d f39f62b 5ccfd0c f39f62b 5ccfd0c f39f62b ddf5341 f39f62b 5ccfd0c 0ff8cd7 6589d49 33e2812 71f794e fe5728b 71f794e fe5728b 71f794e fe5728b 2a72c8b fe5728b 6589d49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import gradio as gr
import requests
import io
import os
import logging
from PIL import Image
from image_processing import downscale_image, limit_colors, convert_to_grayscale, convert_to_black_and_white, resize_image, DITHER_METHODS, QUANTIZATION_METHODS
import json
import time
# Configuração de log
logging.basicConfig(level=logging.DEBUG)
class SomeClass:
def __init__(self):
self.images = []
with open('loras.json', 'r') as f:
loras = json.load(f)
def update_selection(selected_state: gr.SelectData):
logging.debug(f"Inside update_selection, selected_state: {selected_state}")
logging.debug(f"Content of selected_state: {vars(selected_state)}") # Log the content
selected_lora_index = selected_state.index
selected_lora = loras[selected_lora_index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text,
selected_state
)
def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)):
logging.debug(f"Inside run_lora, selected_state: {selected_state}")
logging.debug(f"Content of selected_state in run_lora: {vars(selected_state)}")
if not selected_state:
logging.error("selected_state is None or empty. Make sure a LoRA is selected.")
raise gr.Error("You must select a LoRA before proceeding.")
token = os.getenv("API_TOKEN")
if not token:
logging.error("API_TOKEN is not set.")
raise gr.Error("API_TOKEN is not set.")
selected_lora_index = selected_state.index
selected_lora = loras[selected_lora_index]
api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
trigger_word = selected_lora["trigger_word"]
payload = {
"inputs": f"{prompt} {trigger_word}",
"parameters": {"negative_prompt": "bad art, ugly, watermark, deformed"},
}
headers = {"Authorization": f"Bearer {token}"}
logging.debug(f"API Request: {api_url}")
logging.debug(f"API Payload: {payload}")
error_count = 0
while True:
response = requests.post(api_url, json=payload, headers=headers)
if response.status_code == 200:
return Image.open(io.BytesIO(response.content))
elif response.status_code == 503:
time.sleep(1)
elif response.status_code == 500 and error_count < 5:
logging.error(response.content)
time.sleep(1)
error_count += 1
else:
logging.error(f"Unexpected API Error: {response.status_code}")
raise gr.Error(f"Unexpected API Error: {response.status_code}")
def postprocess(
image,
enabled,
downscale,
need_rescale,
enable_color_limit,
number_of_colors,
quantization_method,
dither_method,
use_k_means,
is_grayscale,
number_of_shades,
quantization_method_grayscale,
dither_method_grayscale,
use_k_means_grayscale,
is_black_and_white,
is_inversed_black_and_white,
black_and_white_threshold,
use_color_palette,
palette_image,
palette_colors,
dither_method_palette
):
logging.debug(f"Available keys in QUANTIZATION_METHODS: {QUANTIZATION_METHODS.keys()}")
logging.debug(f"Selected quantization_method: {quantization_method}")
if not enabled:
return image
processed_image = image.copy()
if downscale > 1:
processed_image = downscale_image(processed_image, downscale)
if enable_color_limit:
processed_image = limit_colors(
image=processed_image,
limit=number_of_colors,
quantize=QUANTIZATION_METHODS[quantization_method.capitalize()],
dither=DITHER_METHODS[dither_method],
use_k_means=use_k_means
)
if is_grayscale:
processed_image = convert_to_grayscale(processed_image)
processed_image = limit_colors(
image=processed_image,
limit=number_of_shades,
quantize=QUANTIZATION_METHODS[quantization_method_grayscale.capitalize()],
dither=DITHER_METHODS[dither_method_grayscale],
use_k_means=use_k_means_grayscale
)
if is_black_and_white:
processed_image = convert_to_black_and_white(processed_image, black_and_white_threshold, is_inversed_black_and_white)
if use_color_palette:
processed_image = limit_colors(
image=processed_image,
palette=palette_image,
palette_colors=palette_colors,
dither=DITHER_METHODS[dither_method_palette]
)
if need_rescale:
processed_image = resize_image(processed_image, image.size)
return processed_image
def run_and_postprocess(prompt, selected_state, enabled, downscale, need_rescale, enable_color_limit, palette_size_color, quantization_methods_color, dither_methods_color, k_means_color, enable_grayscale, palette_size_gray, quantization_methods_gray, dither_methods_gray, k_means_gray, enable_black_and_white, inverse_black_and_white, threshold_black_and_white, enable_custom_palette, palette_image, palette_size_custom, dither_methods_custom):
# Debug: Starting the function
logging.debug("Starting run_and_postprocess function.")
# Run the original image generation
original_image = run_lora(prompt, selected_state)
# Debug: Confirming that the original image was generated
logging.debug("Original image generated.")
# Post-process the image based on user input
processed_image = postprocess(
original_image,
enabled,
downscale,
need_rescale,
enable_color_limit,
palette_size_color,
quantization_methods_color,
dither_methods_color,
k_means_color,
enable_grayscale,
palette_size_gray,
quantization_methods_gray,
dither_methods_gray,
k_means_gray,
enable_black_and_white,
inverse_black_and_white,
threshold_black_and_white,
enable_custom_palette,
palette_image,
palette_size_custom,
dither_methods_custom
)
# Debug: Confirming that post-processing was applied
if enabled:
logging.debug("Post-processing applied.")
else:
logging.debug("Post-processing not applied.")
return processed_image if enabled else original_image
with gr.Blocks() as app:
title = gr.Markdown("# PIXEL ART GENERATOR")
description = gr.Markdown("### This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr). Generate Pixel Art using Lora from [@artificialguybr](https://twitter.com/artificialguybr) and [@nerijs](https://twitter.com/nerijs)".)
selected_state = gr.State()
with gr.Row():
gallery = gr.Gallery([(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=1)
with gr.Column():
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to create with it")
selected_info = gr.Markdown("")
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA")
button = gr.Button("Run")
result = gr.Image(interactive=False, label="Generated Image")
# Accordion moved here, inside the same gr.Blocks context
with gr.Accordion(label="Pixel art", open=True):
with gr.Row():
enabled = gr.Checkbox(label="Enable", value=False)
downscale = gr.Slider(label="Downscale", minimum=1, maximum=32, step=2, value=8)
need_rescale = gr.Checkbox(label="Rescale to original size", value=True)
with gr.Tabs():
with gr.TabItem("Color"):
enable_color_limit = gr.Checkbox(label="Enable", value=False)
palette_size_color = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
quantization_methods_color = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut")
dither_methods_color = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
k_means_color = gr.Checkbox(label="Enable k-means for color quantization", value=True)
with gr.TabItem("Grayscale"):
enable_grayscale = gr.Checkbox(label="Enable", value=False)
palette_size_gray = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
quantization_methods_gray = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut")
dither_methods_gray = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
k_means_gray = gr.Checkbox(label="Enable k-means for color quantization", value=True)
with gr.TabItem("Black and white"):
enable_black_and_white = gr.Checkbox(label="Enable", value=False)
inverse_black_and_white = gr.Checkbox(label="Inverse", value=False)
threshold_black_and_white = gr.Slider(label="Threshold", minimum=1, maximum=256, step=1, value=128)
with gr.TabItem("Custom color palette"):
enable_custom_palette = gr.Checkbox(label="Enable", value=False)
palette_image = gr.Image(label="Color palette image", type="pil")
palette_size_custom = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
dither_methods_custom = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
# The rest of your code for setting up the app
gallery.select(update_selection, outputs=[prompt, selected_info, selected_state])
prompt.submit(fn=run_lora, inputs=[prompt, selected_state], outputs=[result])
button.click(
fn=run_and_postprocess,
inputs=[
prompt,
selected_state,
enabled,
downscale,
need_rescale,
enable_color_limit,
palette_size_color,
quantization_methods_color,
dither_methods_color,
k_means_color,
enable_grayscale,
palette_size_gray,
quantization_methods_gray,
dither_methods_gray,
k_means_gray,
enable_black_and_white,
inverse_black_and_white,
threshold_black_and_white,
enable_custom_palette,
palette_image,
palette_size_custom,
dither_methods_custom
],
outputs=[result]
)
app.queue(max_size=20, concurrency_count=5)
app.launch()
|