import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": 0, "lm_head": "cpu", "transformer.h": 0, "transformer.ln_f": 0, } # config = PeftConfig.from_pretrained("/content/llama-2-7b-medichat") model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-chat-hf", return_dict=True, load_in_8bit=True, device_map=device_map) tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf") model = PeftModel.from_pretrained(model, "maxspin/medichat") import gradio as gr iface.launch() def query_handling(query, conversation): if "thanks" in query.lower() or "thank you" in query.lower() or "thank you very much" in query.lower(): conversation="" return conversation def process_response(input_string): # Find the indices of the first [INST] and last [/INST] start_index = input_string.find("[INST]") end_index = input_string.rfind("[/INST]") # If both [INST] and [/INST] are found if start_index != -1 and end_index != -1: # Extract the substring between [INST] and [/INST] inst_substring = input_string[start_index:end_index + len("[/INST]")] # Remove the extracted substring from the original string cleaned_string = input_string.replace(inst_substring, "") else: # If [INST] or [/INST] is not found, keep the original string cleaned_string = input_string # Remove the special characters and cleaned_string = cleaned_string.replace("", "").replace("", "").replace("[INST]","").replace("[/INST]","") return cleaned_string conversation="" def predict(prompt): global conversation conversation = conversation+f"[INST]{prompt}[/INST]" input_sequense = ""+conversation batch = tokenizer(f"{input_sequense}", return_tensors='pt') batch = batch.to('cuda') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=4000) response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True)) response = process_response(response) conversation+=response conversation = query_handling(prompt,conversation) print(conversation) return response iface = gr.Interface( fn=predict, inputs="text", # Accepts a single text input outputs="text" # Outputs a single text response )