File size: 3,976 Bytes
f489c3f
 
2ff39a0
f489c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b32b1
f489c3f
 
 
 
 
 
 
 
e8b32b1
 
33fcd82
e8b32b1
 
 
f489c3f
 
 
 
 
 
 
 
 
e8b32b1
f489c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
import gradio as gr
from PIL import Image, ImageFilter
import torch
import matplotlib.pyplot as plt
import torch
import numpy as np

processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")


def process_image(image, prompt):
    inputs = processor(
        text=prompt, images=image, padding="max_length", return_tensors="pt"
    )

    # predict
    with torch.no_grad():
        outputs = model(**inputs)
        preds = outputs.logits

    pred = torch.sigmoid(preds)
    mat = pred.cpu().numpy()
    mask = Image.fromarray(np.uint8(mat * 255), "L")
    mask = mask.convert("RGB")
    mask = mask.resize(image.size)
    mask = np.array(mask)[:, :, 0]

    # normalize the mask
    mask_min = mask.min()
    mask_max = mask.max()
    mask = (mask - mask_min) / (mask_max - mask_min)
    return mask


def get_masks(prompts, img, threhsold):
    prompts = prompts.split(",")
    masks = []
    for prompt in prompts:
        mask = process_image(img, prompt)
        mask = mask > threhsold
        masks.append(mask)
    return masks


def extract_image(img, pos_prompts, neg_prompts, threshold, blur_radius=5):
    positive_masks = get_masks(pos_prompts, img, threshold)
    negative_masks = get_masks(neg_prompts, img, threshold)

    # combine masks into one masks, logic OR
    pos_mask = np.any(np.stack(positive_masks), axis=0)
    neg_mask = np.any(np.stack(negative_masks), axis=0)
    final_mask = pos_mask & ~neg_mask

    # apply Gaussian blur for feathering
    final_mask_img = Image.fromarray((final_mask * 255).astype(np.uint8), "L")
    final_mask_img = final_mask_img.filter(Image.GaussianBlur(radius=blur_radius))
    final_mask = np.array(final_mask_img) / 255
    final_mask = final_mask > threshold

    # extract the final image
    final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255, "L")
    inverse_mask = np.invert(final_mask)
    output_image = Image.new("RGBA", img.size, (0, 0, 0, 0))
    output_image.paste(img, mask=final_mask)

    return output_image, final_mask, inverse_mask



title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"


with gr.Blocks() as demo:
    gr.Markdown("# CLIPSeg: Image Segmentation Using Text and Image Prompts")
    gr.Markdown(article)
    gr.Markdown(description)

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil")
            positive_prompts = gr.Textbox(
                label="Please describe what you want to identify (comma separated)"
            )
            negative_prompts = gr.Textbox(
                label="Please describe what you want to ignore (comma separated)"
            )

            input_slider_T = gr.Slider(
                minimum=0, maximum=1, value=0.4, label="Threshold"
            )
            btn_process = gr.Button(label="Process")

        with gr.Column():
            output_image = gr.Image(label="Result")
            output_mask = gr.Image(label="Mask")
            inverse_mask = gr.Image(label="Inverse")

    btn_process.click(
        extract_image,
        inputs=[
            input_image,
            positive_prompts,
            negative_prompts,
            input_slider_T,
        ],
        outputs=[output_image, output_mask, inverse_mask],
        api_name="mask"
    )


demo.launch()