CLIPSeg2 / app.py
aryswisnu's picture
Update app.py
28c2469
raw
history blame
4.05 kB
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import torch
import numpy as np
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
def process_image(image, prompt):
inputs = processor(
text=prompt, images=image, padding="max_length", return_tensors="pt"
)
# predict
with torch.no_grad():
outputs = model(**inputs)
preds = outputs.logits
pred = torch.sigmoid(preds)
mat = pred.cpu().numpy()
mask = Image.fromarray(np.uint8(mat * 255), "L")
mask = mask.convert("RGB")
mask = mask.resize(image.size)
mask = np.array(mask)[:, :, 0]
# normalize the mask
mask_min = mask.min()
mask_max = mask.max()
mask = (mask - mask_min) / (mask_max - mask_min)
return mask
def get_masks(prompts, img, threhsold):
prompts = prompts.split(",")
masks = []
for prompt in prompts:
mask = process_image(img, prompt)
mask = mask > threhsold
masks.append(mask)
return masks
def extract_image(img, pos_prompts, neg_prompts, threshold, alpha_value=0.5):
positive_masks = get_masks(pos_prompts, img, threshold)
negative_masks = get_masks(neg_prompts, img, threshold)
# combine masks into one mask, logic OR
pos_mask = np.any(np.stack(positive_masks), axis=0)
neg_mask = np.any(np.stack(negative_masks), axis=0)
final_mask = pos_mask & ~neg_mask
# threshold the mask
bmask = final_mask > threshold
# zero out values below the threshold
final_mask[final_mask < threshold] = 0
# convert PIL image to RGBA numpy array
img_np = np.array(img.convert("RGBA"))
# create an empty RGBA image with the same size
output_image = np.zeros_like(img_np)
# apply the final_mask as alpha channel on the output image
output_image[:, :, :3] = img_np[:, :, :3]
output_image[:, :, 3] = (final_mask * 255 * alpha_value).astype(np.uint8)
# convert the output_image back to a PIL.Image object
output_image = Image.fromarray(output_image, "RGBA")
return output_image, final_mask, bmask
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"
with gr.Blocks() as demo:
gr.Markdown("# CLIPSeg: Image Segmentation Using Text and Image Prompts")
gr.Markdown(article)
gr.Markdown(description)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
positive_prompts = gr.Textbox(
label="Please describe what you want to identify (comma separated)"
)
negative_prompts = gr.Textbox(
label="Please describe what you want to ignore (comma separated)"
)
input_slider_T = gr.Slider(
minimum=0, maximum=1, value=0.4, label="Threshold"
)
btn_process = gr.Button(label="Process")
with gr.Column():
output_image = gr.Image(label="Result")
output_mask = gr.Image(label="Mask")
inverse_mask = gr.Image(label="Inverse")
btn_process.click(
extract_image,
inputs=[
input_image,
positive_prompts,
negative_prompts,
input_slider_T,
],
outputs=[output_image, output_mask, inverse_mask],
api_name="mask"
)
demo.launch()