Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
2 |
import gradio as gr
|
3 |
-
from PIL import Image
|
4 |
import torch
|
5 |
import matplotlib.pyplot as plt
|
6 |
import torch
|
@@ -53,10 +53,7 @@ def extract_image(img, pos_prompts, neg_prompts, threshold, alpha_value=0.5, blu
|
|
53 |
neg_mask = np.any(np.stack(negative_masks), axis=0)
|
54 |
final_mask = pos_mask & ~neg_mask
|
55 |
|
56 |
-
|
57 |
-
final_mask_img = Image.fromarray((final_mask * 255).astype(np.uint8), "L")
|
58 |
-
final_mask_img = final_mask_img.filter(ImageFilter.GaussianBlur(radius=blur_radius))
|
59 |
-
final_mask = np.array(final_mask_img) / 255
|
60 |
final_mask = final_mask > threshold
|
61 |
|
62 |
# blend the original image and the mask using the alpha value
|
@@ -76,7 +73,6 @@ def extract_image(img, pos_prompts, neg_prompts, threshold, alpha_value=0.5, blu
|
|
76 |
|
77 |
|
78 |
|
79 |
-
|
80 |
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
|
81 |
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
|
82 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"
|
|
|
1 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
2 |
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
import torch
|
5 |
import matplotlib.pyplot as plt
|
6 |
import torch
|
|
|
53 |
neg_mask = np.any(np.stack(negative_masks), axis=0)
|
54 |
final_mask = pos_mask & ~neg_mask
|
55 |
|
56 |
+
final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255, "L")
|
|
|
|
|
|
|
57 |
final_mask = final_mask > threshold
|
58 |
|
59 |
# blend the original image and the mask using the alpha value
|
|
|
73 |
|
74 |
|
75 |
|
|
|
76 |
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
|
77 |
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
|
78 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"
|