Spaces:
Runtime error
Runtime error
as-cle-bert
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
-
from pathlib import Path
|
4 |
import pandas as pd
|
|
|
|
|
5 |
import spaces
|
6 |
|
7 |
-
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
abs_path = Path(__file__).parent
|
15 |
-
|
16 |
-
df = pd.read_csv(str(abs_path / "models.csv"))
|
17 |
-
df.to_html("tab.html")
|
18 |
|
19 |
def refreshfn() -> gr.HTML:
|
20 |
-
df = pd.read_csv(
|
21 |
df.to_html("tab.html")
|
22 |
f = open("tab.html")
|
23 |
content = f.read()
|
@@ -25,53 +18,75 @@ def refreshfn() -> gr.HTML:
|
|
25 |
t = gr.HTML(content)
|
26 |
return t
|
27 |
|
28 |
-
def
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
""")
|
35 |
-
with gr.Tabs():
|
36 |
-
with gr.Tab("Demo"):
|
37 |
-
f = open("tab.html")
|
38 |
-
content = f.read()
|
39 |
-
f.close()
|
40 |
-
t = gr.HTML(content)
|
41 |
-
btn = gr.Button("Refresh")
|
42 |
-
btn.click(fn=refreshfn, inputs=None, outputs=t)
|
43 |
-
with gr.Tab("Chats"):
|
44 |
-
import random
|
45 |
-
import time
|
46 |
-
with gr.Column():
|
47 |
-
chatbot = gr.Chatbot()
|
48 |
-
with gr.Column():
|
49 |
-
chatbot1 = gr.Chatbot()
|
50 |
-
msg = gr.Textbox()
|
51 |
-
clear = gr.ClearButton([msg, chatbot])
|
52 |
-
@spaces.GPU(duration=200)
|
53 |
-
def respond(message, chat_history):
|
54 |
-
response = pipe(message)
|
55 |
-
bot_message = response[0]["generated_text"]
|
56 |
-
chat_history.append((message, bot_message))
|
57 |
-
return "", chat_history
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
# Call the function to run the tasks simultaneously
|
74 |
-
run_functions_simultaneously()
|
75 |
|
76 |
if __name__ == "__main__":
|
77 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import pandas as pd
|
3 |
+
from transformers import pipeline
|
4 |
+
from load_models import models_and_tokenizers, models_checkpoints
|
5 |
import spaces
|
6 |
|
7 |
+
choice = {"ModelA": "", "ModelB": ""}
|
|
|
|
|
8 |
|
9 |
+
dff = pd.read_csv("models.csv")
|
10 |
+
dff.to_html("tab.html")
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def refreshfn() -> gr.HTML:
|
13 |
+
df = pd.read_csv("models.csv")
|
14 |
df.to_html("tab.html")
|
15 |
f = open("tab.html")
|
16 |
content = f.read()
|
|
|
18 |
t = gr.HTML(content)
|
19 |
return t
|
20 |
|
21 |
+
def rewrite_csv_ordered_by_winning_rate(csv_path):
|
22 |
+
# Read the input CSV
|
23 |
+
df = pd.read_csv(csv_path)
|
24 |
+
|
25 |
+
# Sort the DataFrame by WINNING_RATE in descending order
|
26 |
+
df_sorted = df.sort_values(by="WINNING_RATE", ascending=False)
|
27 |
+
|
28 |
+
# Save the sorted DataFrame to a new CSV file
|
29 |
+
df_sorted.to_csv(csv_path, index=False)
|
30 |
+
|
31 |
+
@spaces.GPU(duration=200)
|
32 |
+
def run_inference(pipeline, prompt):
|
33 |
+
response = pipeline(prompt)
|
34 |
+
bot_message = response[0]["generated_text"]
|
35 |
+
return bot_message
|
36 |
+
|
37 |
+
def modelA_button():
|
38 |
+
global choice
|
39 |
+
df = pd.read_csv("models.csv")
|
40 |
+
df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"] += 1
|
41 |
+
df.loc[df["MODEL"] == choice["ModelA"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_PLAYED"]
|
42 |
+
df.to_csv("models.csv")
|
43 |
+
rewrite_csv_ordered_by_winning_rate("models.csv")
|
44 |
+
|
45 |
+
def modelB_button():
|
46 |
+
global choice
|
47 |
+
df = pd.read_csv("models.csv")
|
48 |
+
df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"] += 1
|
49 |
+
df.loc[df["MODEL"] == choice["ModelB"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_PLAYED"]
|
50 |
+
df.to_csv("models.csv")
|
51 |
+
rewrite_csv_ordered_by_winning_rate("models.csv")
|
52 |
+
|
53 |
+
|
54 |
+
def reply(modelA, modelB, prompt):
|
55 |
+
global choice
|
56 |
+
choice["ModelA"] = modelA
|
57 |
+
choice["ModelB"] = modelB
|
58 |
+
df = pd.read_csv("models.csv")
|
59 |
+
df.loc[df["MODEL"] == modelA, "MATCHES_PLAYED"] += 1
|
60 |
+
df.loc[df["MODEL"] == modelB, "MATCHES_PLAYED"] += 1
|
61 |
+
df.to_csv("models.csv", index=False)
|
62 |
+
pipeA = pipeline("text-generation", model=models_and_tokenizers[modelA][0], tokenizer=models_and_tokenizers[modelA][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device="cuda")
|
63 |
+
pipeB = pipeline("text-generation", model=models_and_tokenizers[modelB][0], tokenizer=models_and_tokenizers[modelB][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device="cuda")
|
64 |
+
responseA = run_inference(pipeA, prompt)
|
65 |
+
responseB = run_inference(pipeB, prompt)
|
66 |
+
return responseA, responseB
|
67 |
|
68 |
+
modelA_dropdown = gr.Dropdown(models_checkpoints, label="Model A", info="Choose the first model for the battle!")
|
69 |
+
modelB_dropdown = gr.Dropdown(models_checkpoints, label="Model B", info="Choose the second model for the battle!")
|
70 |
+
prompt_textbox = gr.Textbox(label="Prompt", value="Is pineapple pizza sacrilegious?")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
demo0 = gr.Interface(fn=reply, inputs=[modelA_dropdown, modelB_dropdown, prompt_textbox], outputs=[gr.Markdown(label="Model A response"), gr.Markdown(label="Model B response")])
|
73 |
+
|
74 |
+
with gr.Blocks() as demo1:
|
75 |
+
iface = demo0
|
76 |
+
btnA = gr.Button("Vote for Model A!")
|
77 |
+
btnB = gr.Button("Vote for Model B!")
|
78 |
+
btnA.click(modelA_button, inputs=None, outputs=None)
|
79 |
+
btnB.click(modelB_button, inputs=None, outputs=None)
|
80 |
+
|
81 |
+
with gr.Blocks() as demo2:
|
82 |
+
f = open("tab.html")
|
83 |
+
content = f.read()
|
84 |
+
f.close()
|
85 |
+
t = gr.HTML(content)
|
86 |
+
btn = gr.Button("Refresh")
|
87 |
+
btn.click(fn=refreshfn, inputs=None, outputs=t)
|
88 |
|
89 |
+
demo = gr.TabbedInterface([demo1, demo2], ["Chat Arena", "Leaderboard"])
|
|
|
|
|
90 |
|
91 |
if __name__ == "__main__":
|
92 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|