gamingflexer
gradio app added.
376cbd6
raw
history blame
2.46 kB
import gradio as gr
import pymysql
import pandas as pd
def get_total_number_of_products():
connection = connect_to_db()
cursor = connection.cursor()
# Execute SQL query to count total number of products
sql = "SELECT COUNT(*) AS total_products FROM api_database"
cursor.execute(sql)
result = cursor.fetchone()
total_products = result['total_products']
connection.close()
return total_products
def search_products(search_query):
search_query = " " + search_query.lower() + " "
connection = connect_to_db()
cursor = connection.cursor()
sql = """
SELECT * FROM api_database
WHERE product_name LIKE %s OR description LIKE %s
"""
cursor.execute(sql, ('%' + search_query + '%', '%' + search_query + '%'))
search_results = cursor.fetchall()
connection.close()
search_results_formatted = []
for result in search_results:
search_results_formatted.append(list(result.values()))
return search_results_formatted
def sample_fun(first_image,voice_input, text_input):
return
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo:
with gr.Tab("Add Your Image"):
voice_input = gr.Audio(label="Upload Audio")
prodcut_id = gr.Textbox(label="Enter Product ID")
with gr.Row():
submit_button_tab_1 = gr.Button("Start")
with gr.Tab("Search Catalog"):
with gr.Row():
total_no_of_products = gr.Textbox(value=str(get_total_number_of_products()),label="Total Products")
with gr.Row():
embbed_text_search = gr.Textbox(label="Enter Product Name")
submit_button_tab_4 = gr.Button("Start")
dataframe_output_tab_4 = gr.Dataframe(headers=['id', 'barcode', 'brand', 'sub_brand', 'manufactured_by', 'product_name',
'weight', 'variant', 'net_content', 'price', 'parent_category',
'child_category', 'sub_child_category', 'images_paths', 'description',
'quantity', 'promotion_on_the_pack', 'type_of_packaging', 'mrp'])
submit_button_tab_1.click(fn=sample_fun,inputs=[voice_input,prodcut_id])
submit_button_tab_4.click(fn=search_products,inputs=[embbed_text_search] ,outputs= dataframe_output_tab_4)
demo.launch(server_name="0.0.0.0",server_port=9003)