gamingflexer commited on
Commit
23f8016
·
1 Parent(s): eeea261

Add dependencies and update API key handling

Browse files
Files changed (3) hide show
  1. requirements.txt +4 -1
  2. src/app_utils.py +2 -6
  3. src/audio_text.py +17 -17
requirements.txt CHANGED
@@ -1,2 +1,5 @@
1
  gradio
2
- pandas
 
 
 
 
1
  gradio
2
+ pandas
3
+ soundfile
4
+ langchain==0.1.6
5
+ openai
src/app_utils.py CHANGED
@@ -1,13 +1,9 @@
1
  from textwrap import dedent
2
- import base64
3
- import requests
4
  from openai import OpenAI
5
- import os
6
  from decouple import config
7
- import json
8
-
9
- OPENAI_API_KEY = config('OPENAI_API_KEY', default="")
10
 
 
11
 
12
  voice_edit = dedent("""
13
  ### Instruction:
 
1
  from textwrap import dedent
 
 
2
  from openai import OpenAI
 
3
  from decouple import config
4
+ import json,os
 
 
5
 
6
+ OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
7
 
8
  voice_edit = dedent("""
9
  ### Instruction:
src/audio_text.py CHANGED
@@ -6,7 +6,7 @@ from openai import OpenAI
6
  from decouple import config
7
  import os
8
 
9
- OPENAI_API_KEY = config('OPENAI_API_KEY', default="")
10
  client = OpenAI()
11
  os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
12
 
@@ -18,22 +18,22 @@ os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
18
 
19
 
20
 
21
- def whisper_pipeline(audio_path):
22
- model = whisper.load_model("medium")
23
- # load audio and pad/trim it to fit 30 seconds
24
- audio = whisper.load_audio(audio_path)
25
- audio = whisper.pad_or_trim(audio)
26
- # make log-Mel spectrogram and move to the same device as the model
27
- mel = whisper.log_mel_spectrogram(audio).to(model.device)
28
- # detect the spoken language
29
- _, probs = model.detect_language(mel)
30
- print(f"Detected language: {max(probs, key=probs.get)}")
31
- # decode the audio
32
- options = whisper.DecodingOptions()
33
- result = whisper.decode(model, mel, options)
34
- # print the recognized text
35
- print(result.text)
36
- return result.text
37
 
38
  def whisper_openai(audio_path):
39
  audio_file= open(audio_path, "rb")
 
6
  from decouple import config
7
  import os
8
 
9
+ OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
10
  client = OpenAI()
11
  os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
12
 
 
18
 
19
 
20
 
21
+ # def whisper_pipeline(audio_path):
22
+ # model = whisper.load_model("medium")
23
+ # # load audio and pad/trim it to fit 30 seconds
24
+ # audio = whisper.load_audio(audio_path)
25
+ # audio = whisper.pad_or_trim(audio)
26
+ # # make log-Mel spectrogram and move to the same device as the model
27
+ # mel = whisper.log_mel_spectrogram(audio).to(model.device)
28
+ # # detect the spoken language
29
+ # _, probs = model.detect_language(mel)
30
+ # print(f"Detected language: {max(probs, key=probs.get)}")
31
+ # # decode the audio
32
+ # options = whisper.DecodingOptions()
33
+ # result = whisper.decode(model, mel, options)
34
+ # # print the recognized text
35
+ # print(result.text)
36
+ # return result.text
37
 
38
  def whisper_openai(audio_path):
39
  audio_file= open(audio_path, "rb")