import gradio as gr import pandas as pd import os import requests from audio_text import whisper_openai from app_utils import voice_edit, extract_json_from_text, getname import uuid import soundfile as sf import time BASE_PATH = os.path.dirname(os.path.abspath(__file__)) OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") SEVER_IP = os.environ.get("SEVER_IP","http://34.122.223.224:9002") def get_total_number_of_products(): response = requests.get(f'{SEVER_IP}/api/total_number_of_products/') if response.status_code == 200: return response.json()['total_number_of_products'] else: return "Error fetching total number of products" def search_products(product_name): response = requests.get(f'{SEVER_IP}/api/search_products/', params={'name': product_name}) if response.status_code == 200: return pd.DataFrame(response.json()) else: return pd.DataFrame([]) # Return an empty DataFrame in case of an error def update_product_details_by_id(product_id,payload): response = requests.put(f'{SEVER_IP}/api/update_product/{product_id}/',data=payload) if response.status_code == 200: return response.json() # Returns the product details as a dictionary else: return {"error": f"Product with ID {product_id} not found or error occurred."} def sample_fun(voice_input, product_id, progress=gr.Progress()): audio_path = str(uuid.uuid4().hex) + ".wav" print(voice_input) sample_rate,audio_data = voice_input progress(0.1, desc="Collecting audio data") # audio_data = audio_data.reshape(-1, 1) os.makedirs(os.path.join(BASE_PATH,"audio"),exist_ok=True) audio_save_path = os.path.join(BASE_PATH,"audio",audio_path) sf.write(audio_save_path, audio_data, sample_rate) # print("Product ID:", product_id) time.sleep(2) transcription = whisper_openai(audio_save_path) # print("Transcription:", transcription) prompt = voice_edit.format(text = transcription) # print("Prompt:", prompt) name = getname(prompt) try: json_data = extract_json_from_text(name) except Exception as e: print(f"-->Exception occurred while extracting JSON: {str(e)}") # json_data['product_id'] = product_id json_data_to_add = {} progress(0.4, desc="Collecting Links") for key in json_data: if json_data[key] == "null" or json_data[key] == "" or json_data[key] == None: pass else: json_data_to_add[key] = json_data[key] print(json_data_to_add) progress(0.7, desc="Collecting Links") update_product_details_by_id(product_id,json_data) progress(0.9, desc="Collecting Links") return json_data with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink),title = "Edit Product by Voice") as demo: with gr.Tab("Edit Product by Voice"): voice_input = gr.Audio(sources=["microphone"]) prodcut_id = gr.Textbox(label="Enter Product ID") with gr.Row(): submit_button_tab_1 = gr.Button("Start") with gr.Tab("Search Catalog"): with gr.Row(): total_no_of_products = gr.Textbox(value=str(get_total_number_of_products()),label="Total Products") with gr.Row(): embbed_text_search = gr.Textbox(label="Enter Product Name") submit_button_tab_4 = gr.Button("Start") dataframe_output_tab_4 = gr.Dataframe(headers=['id', 'barcode', 'brand', 'sub_brand', 'manufactured_by', 'product_name', 'weight', 'variant', 'net_content', 'price', 'parent_category', 'child_category', 'sub_child_category', 'images_paths', 'description', 'quantity', 'promotion_on_the_pack', 'type_of_packaging', 'mrp']) submit_button_tab_1.click(fn=sample_fun,inputs=[voice_input,prodcut_id]) submit_button_tab_4.click(fn=search_products,inputs=[embbed_text_search] ,outputs= dataframe_output_tab_4) demo.launch()