Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,19 +7,19 @@ from sentence_transformers import SentenceTransformer, util
|
|
| 7 |
import requests
|
| 8 |
import json
|
| 9 |
|
| 10 |
-
# Configure Hugging Face API token securely
|
| 11 |
api_key = os.getenv("HF_API_KEY")
|
| 12 |
|
| 13 |
-
# Load the CSV dataset
|
| 14 |
try:
|
| 15 |
-
data = pd.read_csv('genetic-Final.csv')
|
| 16 |
except FileNotFoundError:
|
| 17 |
st.error("Dataset file not found. Please upload it to this directory.")
|
| 18 |
|
| 19 |
# Initialize Sentence Transformer model for RAG-based retrieval
|
| 20 |
retriever_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 21 |
|
| 22 |
-
# Preprocess the dataset
|
| 23 |
if 'combined_description' not in data.columns:
|
| 24 |
data['combined_description'] = (
|
| 25 |
data['Symptoms'].fillna('') + " " +
|
|
@@ -31,94 +31,181 @@ if 'combined_description' not in data.columns:
|
|
| 31 |
data['Emergency Treatment'].fillna('')
|
| 32 |
)
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# Generate embeddings for the combined description if not already done
|
| 35 |
if 'embeddings' not in data.columns:
|
| 36 |
-
data['embeddings'] = data['combined_description'].apply(lambda x: retriever_model.encode(x).tolist())
|
| 37 |
|
| 38 |
-
# Function to retrieve relevant information based on user query
|
| 39 |
def get_relevant_info(query, top_k=3):
|
| 40 |
query_embedding = retriever_model.encode(query)
|
| 41 |
similarities = [util.cos_sim(query_embedding, doc_emb)[0][0].item() for doc_emb in data['embeddings']]
|
| 42 |
top_indices = sorted(range(len(similarities)), key=lambda i: similarities[i], reverse=True)[:top_k]
|
| 43 |
return data.iloc[top_indices]
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
# payload = {"inputs": input_with_context}
|
| 54 |
-
|
| 55 |
-
# try:
|
| 56 |
-
# response = requests.post(api_url, headers=headers, json=payload)
|
| 57 |
-
# response_data = response.json()
|
| 58 |
-
# if isinstance(response_data, list) and "generated_text" in response_data[0]:
|
| 59 |
-
# return response_data[0]["generated_text"]
|
| 60 |
-
# else:
|
| 61 |
-
# return "Unexpected response format from API."
|
| 62 |
-
# except Exception as e:
|
| 63 |
-
# st.error(f"Error during API request: {e}")
|
| 64 |
-
# return "Error processing your request."
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def generate_response(input_text, relevant_info):
|
| 67 |
-
# Concatenate the relevant information as context for the model
|
| 68 |
context = "\n".join(relevant_info['combined_description'].tolist())
|
| 69 |
input_with_context = f"Context: {context}\n\nUser Query: {input_text}"
|
| 70 |
|
| 71 |
api_url = "https://api-inference.huggingface.co/models/m42-health/Llama3-Med42-8B"
|
| 72 |
-
headers = {"Authorization": f"Bearer {
|
| 73 |
payload = {"inputs": input_with_context}
|
| 74 |
|
| 75 |
try:
|
| 76 |
response = requests.post(api_url, headers=headers, json=payload)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
response_data = response.json()
|
| 78 |
-
|
| 79 |
-
# Print or display the raw response data
|
| 80 |
-
st.write("Raw API response:", response_data)
|
| 81 |
-
|
| 82 |
-
# Check and parse the response
|
| 83 |
if isinstance(response_data, list) and "generated_text" in response_data[0]:
|
| 84 |
return response_data[0]["generated_text"]
|
| 85 |
else:
|
| 86 |
-
return "Unexpected response format from API."
|
| 87 |
except Exception as e:
|
| 88 |
-
|
| 89 |
-
return "Error processing your request."
|
| 90 |
|
| 91 |
-
# Check and parse the response if it's a single JSON object
|
| 92 |
-
if isinstance(response_data, dict) and "generated_text" in response_data:
|
| 93 |
-
return response_data["generated_text"]
|
| 94 |
|
| 95 |
|
| 96 |
-
# Streamlit UI for the
|
| 97 |
def main():
|
| 98 |
-
st.title("Medical
|
| 99 |
-
st.sidebar.header("
|
| 100 |
|
| 101 |
# Text input for user queries
|
| 102 |
-
user_query = st.sidebar.text_input("Type your
|
| 103 |
|
| 104 |
-
# File uploader for medical report
|
| 105 |
uploaded_file = st.sidebar.file_uploader("Upload a medical report (optional)", type=["txt", "pdf", "csv"])
|
| 106 |
|
| 107 |
# Process the query if provided
|
| 108 |
if user_query:
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
# Generate a
|
| 113 |
-
|
| 114 |
-
st.write("
|
| 115 |
-
st.write(
|
| 116 |
|
| 117 |
-
# Process the uploaded file if any
|
| 118 |
if uploaded_file:
|
| 119 |
-
# Placeholder for handling file analysis
|
| 120 |
st.write("### Uploaded Report Analysis:")
|
| 121 |
-
report_text = "Extracted report content here" # Placeholder for file processing
|
| 122 |
st.write(report_text)
|
| 123 |
|
| 124 |
if __name__ == "__main__":
|
|
|
|
| 7 |
import requests
|
| 8 |
import json
|
| 9 |
|
| 10 |
+
# Configure Hugging Face API token securely (ensure it's set in environment variables)
|
| 11 |
api_key = os.getenv("HF_API_KEY")
|
| 12 |
|
| 13 |
+
# Load the CSV dataset (place the CSV in the same directory as app.py in Hugging Face Spaces)
|
| 14 |
try:
|
| 15 |
+
data = pd.read_csv('genetic-Final.csv') # Ensure the dataset filename is correct
|
| 16 |
except FileNotFoundError:
|
| 17 |
st.error("Dataset file not found. Please upload it to this directory.")
|
| 18 |
|
| 19 |
# Initialize Sentence Transformer model for RAG-based retrieval
|
| 20 |
retriever_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 21 |
|
| 22 |
+
# Preprocess the dataset by creating a combined description column
|
| 23 |
if 'combined_description' not in data.columns:
|
| 24 |
data['combined_description'] = (
|
| 25 |
data['Symptoms'].fillna('') + " " +
|
|
|
|
| 31 |
data['Emergency Treatment'].fillna('')
|
| 32 |
)
|
| 33 |
|
| 34 |
+
# Define weights for each column based on importance
|
| 35 |
+
column_weights = {
|
| 36 |
+
'Symptoms': 0.4,
|
| 37 |
+
'Severity Level': 0.2,
|
| 38 |
+
'Risk Assessment': 0.1,
|
| 39 |
+
'Treatment Options': 0.15,
|
| 40 |
+
'Suggested Medical Tests': 0.05,
|
| 41 |
+
'Minimum Values for Medical Tests': 0.05,
|
| 42 |
+
'Emergency Treatment': 0.05
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
# Precompute embeddings for each weighted column
|
| 46 |
+
for col in column_weights.keys():
|
| 47 |
+
if f"{col}_embeddings" not in data.columns:
|
| 48 |
+
data[f"{col}_embeddings"] = data[col].fillna("").apply(lambda x: retriever_model.encode(x).tolist())
|
| 49 |
+
|
| 50 |
+
# Function to retrieve relevant information with weighted scoring
|
| 51 |
+
def get_weighted_relevant_info(query, top_k=3):
|
| 52 |
+
query_embedding = retriever_model.encode(query)
|
| 53 |
+
weighted_similarities = []
|
| 54 |
+
for idx, row in data.iterrows():
|
| 55 |
+
weighted_score = 0
|
| 56 |
+
for col, weight in column_weights.items():
|
| 57 |
+
if row[f"{col}_embeddings"]:
|
| 58 |
+
col_similarity = util.cos_sim(query_embedding, row[f"{col}_embeddings"])[0][0].item()
|
| 59 |
+
weighted_score += col_similarity * weight
|
| 60 |
+
weighted_similarities.append(weighted_score)
|
| 61 |
+
|
| 62 |
+
top_indices = sorted(range(len(weighted_similarities)), key=lambda i: weighted_similarities[i], reverse=True)[:top_k]
|
| 63 |
+
return data.iloc[top_indices]
|
| 64 |
+
|
| 65 |
# Generate embeddings for the combined description if not already done
|
| 66 |
if 'embeddings' not in data.columns:
|
| 67 |
+
data['embeddings'] = data['combined_description'].apply(lambda x: retriever_model.encode(x).tolist() if x else [])
|
| 68 |
|
| 69 |
+
# Function to retrieve relevant information based on user query (non-weighted)
|
| 70 |
def get_relevant_info(query, top_k=3):
|
| 71 |
query_embedding = retriever_model.encode(query)
|
| 72 |
similarities = [util.cos_sim(query_embedding, doc_emb)[0][0].item() for doc_emb in data['embeddings']]
|
| 73 |
top_indices = sorted(range(len(similarities)), key=lambda i: similarities[i], reverse=True)[:top_k]
|
| 74 |
return data.iloc[top_indices]
|
| 75 |
|
| 76 |
+
# Enhanced response generation function with debugging
|
| 77 |
+
# Import required libraries
|
| 78 |
+
import os
|
| 79 |
+
import pandas as pd
|
| 80 |
+
import streamlit as st
|
| 81 |
+
from transformers import pipeline
|
| 82 |
+
from sentence_transformers import SentenceTransformer, util
|
| 83 |
+
import requests
|
| 84 |
+
import json
|
| 85 |
+
|
| 86 |
+
# Configure Hugging Face API token securely (ensure it's set in environment variables)
|
| 87 |
+
api_key = os.getenv("HF_API_KEY")
|
| 88 |
+
|
| 89 |
+
# Load the CSV dataset (place the CSV in the same directory as app.py in Hugging Face Spaces)
|
| 90 |
+
try:
|
| 91 |
+
data = pd.read_csv('genetic-Final.csv') # Ensure the dataset filename is correct
|
| 92 |
+
except FileNotFoundError:
|
| 93 |
+
st.error("Dataset file not found. Please upload it to this directory.")
|
| 94 |
+
|
| 95 |
+
# Initialize Sentence Transformer model for RAG-based retrieval
|
| 96 |
+
retriever_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 97 |
+
|
| 98 |
+
# Preprocess the dataset by creating a combined description column
|
| 99 |
+
if 'combined_description' not in data.columns:
|
| 100 |
+
data['combined_description'] = (
|
| 101 |
+
data['Symptoms'].fillna('') + " " +
|
| 102 |
+
data['Severity Level'].fillna('') + " " +
|
| 103 |
+
data['Risk Assessment'].fillna('') + " " +
|
| 104 |
+
data['Treatment Options'].fillna('') + " " +
|
| 105 |
+
data['Suggested Medical Tests'].fillna('') + " " +
|
| 106 |
+
data['Minimum Values for Medical Tests'].fillna('') + " " +
|
| 107 |
+
data['Emergency Treatment'].fillna('')
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Define weights for each column based on importance
|
| 111 |
+
column_weights = {
|
| 112 |
+
'Symptoms': 0.4,
|
| 113 |
+
'Severity Level': 0.2,
|
| 114 |
+
'Risk Assessment': 0.1,
|
| 115 |
+
'Treatment Options': 0.15,
|
| 116 |
+
'Suggested Medical Tests': 0.05,
|
| 117 |
+
'Minimum Values for Medical Tests': 0.05,
|
| 118 |
+
'Emergency Treatment': 0.05
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
# Precompute embeddings for each weighted column
|
| 122 |
+
for col in column_weights.keys():
|
| 123 |
+
if f"{col}_embeddings" not in data.columns:
|
| 124 |
+
data[f"{col}_embeddings"] = data[col].fillna("").apply(lambda x: retriever_model.encode(x).tolist())
|
| 125 |
+
|
| 126 |
+
# Function to retrieve relevant information with weighted scoring
|
| 127 |
+
def get_weighted_relevant_info(query, top_k=3):
|
| 128 |
+
query_embedding = retriever_model.encode(query)
|
| 129 |
+
weighted_similarities = []
|
| 130 |
+
for idx, row in data.iterrows():
|
| 131 |
+
weighted_score = 0
|
| 132 |
+
for col, weight in column_weights.items():
|
| 133 |
+
if row[f"{col}_embeddings"]:
|
| 134 |
+
col_similarity = util.cos_sim(query_embedding, row[f"{col}_embeddings"])[0][0].item()
|
| 135 |
+
weighted_score += col_similarity * weight
|
| 136 |
+
weighted_similarities.append(weighted_score)
|
| 137 |
|
| 138 |
+
top_indices = sorted(range(len(weighted_similarities)), key=lambda i: weighted_similarities[i], reverse=True)[:top_k]
|
| 139 |
+
return data.iloc[top_indices]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
+
# Generate embeddings for the combined description if not already done
|
| 142 |
+
if 'embeddings' not in data.columns:
|
| 143 |
+
data['embeddings'] = data['combined_description'].apply(lambda x: retriever_model.encode(x).tolist() if x else [])
|
| 144 |
+
|
| 145 |
+
# Function to retrieve relevant information based on user query (non-weighted)
|
| 146 |
+
def get_relevant_info(query, top_k=3):
|
| 147 |
+
query_embedding = retriever_model.encode(query)
|
| 148 |
+
similarities = [util.cos_sim(query_embedding, doc_emb)[0][0].item() for doc_emb in data['embeddings']]
|
| 149 |
+
top_indices = sorted(range(len(similarities)), key=lambda i: similarities[i], reverse=True)[:top_k]
|
| 150 |
+
return data.iloc[top_indices]
|
| 151 |
+
|
| 152 |
+
# Enhanced response generation function with debugging
|
| 153 |
def generate_response(input_text, relevant_info):
|
|
|
|
| 154 |
context = "\n".join(relevant_info['combined_description'].tolist())
|
| 155 |
input_with_context = f"Context: {context}\n\nUser Query: {input_text}"
|
| 156 |
|
| 157 |
api_url = "https://api-inference.huggingface.co/models/m42-health/Llama3-Med42-8B"
|
| 158 |
+
headers = {"Authorization": f"Bearer {api_key}"}
|
| 159 |
payload = {"inputs": input_with_context}
|
| 160 |
|
| 161 |
try:
|
| 162 |
response = requests.post(api_url, headers=headers, json=payload)
|
| 163 |
+
st.write("API Raw Response:", response.text) # Display raw response for debugging
|
| 164 |
+
|
| 165 |
+
# Check response status
|
| 166 |
+
if response.status_code != 200:
|
| 167 |
+
return f"Error: API responded with status code {response.status_code}. Full response: {response.json()}"
|
| 168 |
+
|
| 169 |
+
# Parse and validate response
|
| 170 |
response_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
if isinstance(response_data, list) and "generated_text" in response_data[0]:
|
| 172 |
return response_data[0]["generated_text"]
|
| 173 |
else:
|
| 174 |
+
return f"Unexpected response format from API. Full response: {response_data}"
|
| 175 |
except Exception as e:
|
| 176 |
+
return f"Error during API request: {e}"
|
|
|
|
| 177 |
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
|
| 180 |
+
# Streamlit UI for the Chatbot
|
| 181 |
def main():
|
| 182 |
+
st.title("Medical Report and Analysis Chatbot")
|
| 183 |
+
st.sidebar.header("Upload Medical Report or Enter Query")
|
| 184 |
|
| 185 |
# Text input for user queries
|
| 186 |
+
user_query = st.sidebar.text_input("Type your question or query")
|
| 187 |
|
| 188 |
+
# File uploader for medical report
|
| 189 |
uploaded_file = st.sidebar.file_uploader("Upload a medical report (optional)", type=["txt", "pdf", "csv"])
|
| 190 |
|
| 191 |
# Process the query if provided
|
| 192 |
if user_query:
|
| 193 |
+
st.write("### FAQ and Responses:")
|
| 194 |
+
|
| 195 |
+
# Retrieve relevant information from the dataset
|
| 196 |
+
relevant_info = get_weighted_relevant_info(user_query)
|
| 197 |
+
for i, row in relevant_info.iterrows():
|
| 198 |
+
st.write(f"- {row['combined_description']}")
|
| 199 |
|
| 200 |
+
# Generate a response from the model
|
| 201 |
+
response = generate_response(user_query, relevant_info)
|
| 202 |
+
st.write("#### Model's Response:")
|
| 203 |
+
st.write(response)
|
| 204 |
|
| 205 |
+
# Process the uploaded file (if any)
|
| 206 |
if uploaded_file:
|
|
|
|
| 207 |
st.write("### Uploaded Report Analysis:")
|
| 208 |
+
report_text = "Extracted report content here" # Placeholder for file processing
|
| 209 |
st.write(report_text)
|
| 210 |
|
| 211 |
if __name__ == "__main__":
|