testdepth / app.py
ascarlettvfx's picture
Update app.py
0bbefc3 verified
raw
history blame contribute delete
980 Bytes
import gradio as gr
from PIL import Image
from marigold_depth_estimation import MarigoldPipeline, UNet2DConditionModel, AutoencoderKL, DDIMScheduler
# Instantiate the model components and the pipeline
unet_model = UNet2DConditionModel()
vae_model = AutoencoderKL()
scheduler = DDIMScheduler()
pipeline = MarigoldPipeline(unet=unet_model, vae=vae_model, scheduler=scheduler)
def predict_depth(input_image):
# Process the image and predict the depth map
output = pipeline(input_image)
return output.depth_image
iface = gr.Interface(
fn=predict_depth,
inputs=gr.inputs.Image(type="pil", label="Upload an Image"),
outputs=gr.outputs.Image(type="pil", label="Depth Map"),
title="Depth Map Generation",
description="Upload an image to generate its depth map using the Marigold Depth Estimation Model.",
examples=["sample1.jpg", "sample2.jpg"] # Optional: include example images in your repository
)
if __name__ == "__main__":
iface.launch()