Spaces:
Runtime error
Runtime error
ascarlettvfx
commited on
Commit
•
a49153f
1
Parent(s):
5228808
Create marigold_depth_estimation.py
Browse files- marigold_depth_estimation.py +79 -0
marigold_depth_estimation.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel, AutoencoderKL, DDIMScheduler
|
5 |
+
from diffusers.utils import BaseOutput
|
6 |
+
|
7 |
+
class MarigoldDepthOutput(BaseOutput):
|
8 |
+
depth_np: np.ndarray
|
9 |
+
depth_image: Image.Image
|
10 |
+
|
11 |
+
class MarigoldPipeline(DiffusionPipeline):
|
12 |
+
def __init__(self, unet: UNet2DConditionModel, vae: AutoencoderKL, scheduler: DDIMScheduler):
|
13 |
+
super().__init__()
|
14 |
+
self.unet = unet
|
15 |
+
self.vae = vae
|
16 |
+
self.scheduler = scheduler
|
17 |
+
|
18 |
+
@torch.no_grad()
|
19 |
+
def __call__(self, input_image: Image, denoising_steps: int = 10, save_path: str = None) -> MarigoldDepthOutput:
|
20 |
+
device = self.device
|
21 |
+
|
22 |
+
# Image preprocessing
|
23 |
+
input_image = input_image.convert("RGB")
|
24 |
+
image = np.asarray(input_image)
|
25 |
+
rgb = np.transpose(image, (2, 0, 1))
|
26 |
+
rgb_norm = rgb / 255.0 * 2.0 - 1.0
|
27 |
+
rgb_norm = torch.from_numpy(rgb_norm).to(device)
|
28 |
+
|
29 |
+
# Encode image
|
30 |
+
rgb_latent = self._encode_rgb(rgb_norm)
|
31 |
+
|
32 |
+
# Initial depth map (noise)
|
33 |
+
depth_latent = torch.randn(rgb_latent.shape, device=device)
|
34 |
+
|
35 |
+
# Denoising loop
|
36 |
+
timesteps = self.scheduler.timesteps
|
37 |
+
for t in timesteps:
|
38 |
+
unet_input = torch.cat([rgb_latent, depth_latent], dim=1)
|
39 |
+
noise_pred = self.unet(unet_input, t).sample
|
40 |
+
depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample
|
41 |
+
|
42 |
+
# Decode depth map
|
43 |
+
depth = self._decode_depth(depth_latent)
|
44 |
+
|
45 |
+
# Scale to [0, 1] and convert to numpy
|
46 |
+
depth = (depth + 1.0) / 2.0
|
47 |
+
depth_np = depth.cpu().numpy().astype(np.float32)
|
48 |
+
depth_image = (depth_np * 255).astype(np.uint8)
|
49 |
+
depth_image = Image.fromarray(depth_image[0], 'L') # 'L' mode for grayscale image
|
50 |
+
|
51 |
+
# Save the depth map image if a path is provided
|
52 |
+
if save_path:
|
53 |
+
depth_image.save(save_path)
|
54 |
+
|
55 |
+
return MarigoldDepthOutput(depth_np=depth_np, depth_image=depth_image)
|
56 |
+
|
57 |
+
def _encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
|
58 |
+
h = self.vae.encoder(rgb_in)
|
59 |
+
moments = self.vae.quant_conv(h)
|
60 |
+
mean, _ = torch.chunk(moments, 2, dim=1)
|
61 |
+
rgb_latent = mean * 0.18215
|
62 |
+
return rgb_latent
|
63 |
+
|
64 |
+
def _decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
|
65 |
+
z = self.vae.post_quant_conv(depth_latent)
|
66 |
+
stacked = self.vae.decoder(z)
|
67 |
+
depth_mean = stacked.mean(dim=1, keepdim=True)
|
68 |
+
return depth_mean
|
69 |
+
|
70 |
+
# Instantiate the model components and the pipeline
|
71 |
+
unet_model = UNet2DConditionModel()
|
72 |
+
vae_model = AutoencoderKL()
|
73 |
+
scheduler = DDIMScheduler()
|
74 |
+
pipeline = MarigoldPipeline(unet=unet_model, vae=vae_model, scheduler=scheduler)
|
75 |
+
|
76 |
+
# Load an image and predict the depth map
|
77 |
+
input_image = Image.open('path_to_your_image.jpg')
|
78 |
+
output_path = 'path_to_save_image.jpg' # Specify the path where you want to save the depth image
|
79 |
+
output = pipeline(input_image, denoising_steps=10, save_path=output_path)
|