# streamlit for gpt2 model web app import streamlit as st import tensorflow as tf from transformers import TFGPT2LMHeadModel, GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("ashiqabdulkhader/GPT2-Poet") model = TFGPT2LMHeadModel.from_pretrained("ashiqabdulkhader/GPT2-Poet") st.title("GPT2 Poet") st.write("This is a web app for GPT2 Poet model. You can generate poems using this web app.") prompt = st.text_input("Enter a prompt for the poem", "The quick brown fox") length = st.slider("Length of the poem", min_value=100, max_value=1000, value=100) temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=1.0) top_k = st.slider("Top K", min_value=0, max_value=10, value=0) top_p = st.slider("Top P", min_value=0.0, max_value=1.0, value=0.9) input_ids = tokenizer.encode(prompt, return_tensors='tf') sample_outputs = model.generate( input_ids, do_sample=True, max_length=length, top_k=top_k, top_p=top_p, temperature=temperature, num_return_sequences=3 ) st.write("Output:", tokenizer.decode( sample_outputs[0], skip_special_tokens=True))