Spaces:
Sleeping
Sleeping
File size: 11,556 Bytes
fd4c083 0d7d207 75f75a1 0d7d207 6fce636 0d7d207 75f75a1 0d7d207 356c43a 75f75a1 356c43a 0d7d207 50f85db 98ef25e 0d7d207 50f85db 0d7d207 50f85db 0d7d207 2389791 356c43a 2e762b3 356c43a 2e762b3 2389791 356c43a 1904770 356c43a bf1555a 356c43a 0d7d207 6c4cb55 0d7d207 6c4cb55 b324ee1 6c4cb55 0d7d207 6c4cb55 9a50d02 7da6719 0d7d207 6c4cb55 0d7d207 b324ee1 6c4cb55 7da6719 9a50d02 7da6719 356c43a 1904770 0d7d207 6c4cb55 6fce636 0d7d207 6c4cb55 0d7d207 6c4cb55 7da6719 cf071b9 7da6719 0d7d207 6c4cb55 0d7d207 6c4cb55 446db64 7da6719 6c4cb55 7c1609a e8f5afe 6c4cb55 1904770 6c4cb55 b40ab34 d7ec460 f166bfe d7ec460 0d7d207 4d53e66 6c4cb55 0d7d207 7c1609a 0d7d207 7da6719 0d7d207 4d53e66 0d7d207 88d8b6d ab6bc31 7c1609a 0d7d207 88d8b6d ab6bc31 88d8b6d 0d7d207 6d01d0c 0d7d207 9a50d02 aba2db8 9a50d02 6d01d0c 0d7d207 ab6bc31 0d7d207 6d01d0c 0d7d207 ace20a5 9a50d02 ace20a5 0d7d207 6d01d0c 0d7d207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Classifier
import os
import time as reqtime
import datetime
from pytz import timezone
import torch
# import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
from statistics import mode
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
# in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
# @spaces.GPU
def classify_GPU(input_data):
print('Loading model...')
SEQ_LEN = 1024
PAD_IDX = 14627
DEVICE = 'cpu' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 12, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Annotated_MIDI_Dataset_Classifier_Trained_Model_21269_steps_0.4335_loss_0.8716_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
#==================================================================
number_of_batches = 1 # @param {type:"slider", min:1, max:100, step:1}
# @markdown NOTE: You can increase the number of batches on high-ram GPUs for better classification
print('=' * 70)
print('Annotated MIDI Dataset Classifier')
print('=' * 70)
print('Classifying...')
torch.cuda.empty_cache()
model.eval()
results = []
for input in input_data:
x = torch.tensor([input[:1022]] * number_of_batches, dtype=torch.long, device=DEVICE)
with ctx:
out = model.generate(x,
1,
temperature=0.9,
filter_logits_fn=top_k,
filter_kwargs={'k': 1},
return_prime=False,
verbose=False)
y = out.tolist()
output = [l[0] for l in y]
result = mode(output)
results.append(result)
return output, results
# =================================================================================================
def ClassifyMIDI(input_midi):
SEQ_LEN = 1024
PAD_IDX = 14627
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
print('-' * 70)
print('Input file name:', fn)
print('=' * 70)
print('Loading MIDI file...')
midi_name = fn
raw_score = TMIDIX.midi2single_track_ms_score(open(input_midi.name, 'rb').read())
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore = [e for e in TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) if e[6] < 80]
cscore = TMIDIX.chordify_score([1000, escore])
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
melody_chords = []
pe = cscore[0][0]
for c in cscore:
pitches = []
for e in c:
if e[4] not in pitches:
dtime = max(0, min(127, e[1]-pe[1]))
dur = max(1, min(127, e[2]))
ptc = max(1, min(127, e[4]))
melody_chords.append([dtime, dur, ptc])
pitches.append(ptc)
pe = e
#==============================================================
seq = []
input_data = []
notes_counter = 0
for mm in melody_chords:
time = mm[0]
dur = mm[1]
ptc = mm[2]
seq.extend([time, dur+128, ptc+256])
notes_counter += 1
for i in range(0, len(seq)-SEQ_LEN-4, (SEQ_LEN-4) // 4):
schunk = seq[i:i+SEQ_LEN-4]
input_data.append([14624] + schunk + [14625])
print('Done!')
print('=' * 70)
#==============================================================
classification_summary_string = '=' * 70
classification_summary_string += '\n'
print('Composition has', notes_counter, 'notes')
print('=' * 70)
print('Composition was split into' , len(input_data), 'chunks of 340 notes each with 255 notes overlap')
print('Number of notes in all composition chunks:', len(input_data) * 340)
classification_summary_string += 'Composition has ' + str(notes_counter) + ' notes\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
classification_summary_string += 'Composition was split into ' + str(len(input_data)) + ' chunks of 340 notes each with 170 notes overlap\n'
classification_summary_string += 'Number of notes in all composition chunks: ' + str(len(input_data) * 340) + '\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
output, results = classify_GPU(input_data)
all_results_labels = [classifier_labels[0][r-384] for r in results]
final_result = mode(results)
print('Done!')
print('=' * 70)
print('Most common classification label:', classifier_labels[0][final_result-384])
print('Most common classification label ratio:' , results.count(final_result) / len(results))
print('Most common classification label index', final_result)
print('=' * 70)
classification_summary_string += 'Most common classification label: ' + str(classifier_labels[0][final_result-384]) + '\n'
classification_summary_string += 'Most common classification label ratio: ' + str(results.count(final_result) / len(results)) + '\n'
classification_summary_string += 'Most common classification label index '+ str(final_result) + '\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
print('All classification labels summary:')
print('=' * 70)
for i, a in enumerate(all_results_labels):
print('Notes', i*85, '-', (i*85)+340, '===', a)
classification_summary_string += 'Notes ' + str(i*85) + ' - ' + str((i*85)+340) + ' === ' + str(a) + '\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
score_idx = processed_scores_labels.index(classifier_labels[0][final_result-384])
output_score = processed_scores[score_idx][1][:6000]
print('=' * 70)
print('Sample INTs', results[:15])
print('=' * 70)
fn1 = processed_scores[score_idx][0]
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score)
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
output_signature = 'Advanced MIDI Classifier',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
timings_multiplier=16
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = classification_summary_string
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True, timings_multiplier=16)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
print('Loading Annotated MIDI Dataset processed scores...')
processed_scores = TMIDIX.Tegridy_Any_Pickle_File_Reader('processed_scores')
processed_scores_labels = [l[0] for l in processed_scores]
print('=' * 70)
print('Loading Annotated MIDI Dataset Classifier Songs Artists Labels...')
classifier_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Annotated_MIDI_Dataset_Classifier_Songs_Artists_Labels')
print('=' * 70)
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Advanced MIDI Classifier</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Detailed MIDI classification with transformers</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Advanced-MIDI-Classifier&style=flat)\n\n"
"This is a demo for Annotated MIDI Dataset\n\n"
"Check out [Annotated MIDI Dataset](https://huggingface.co/datasets/asigalov61/Annotated-MIDI-Dataset) on Hugging Face!\n\n"
)
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
run_btn = gr.Button("classify", variant="primary")
gr.Markdown("## Classification results")
output_midi_title = gr.Textbox(label="Best classification match MIDI title")
output_midi_summary = gr.Textbox(label="MIDI classification summary")
output_audio = gr.Audio(label="Best classification match MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Best classification match MIDI score plot")
output_midi = gr.File(label="Best classification match MIDI file", file_types=[".mid"])
run_event = run_btn.click(ClassifyMIDI, [input_midi],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
app.queue().launch() |