Spaces:
Sleeping
Sleeping
# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Classifier | |
import os | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
import torch | |
# import spaces | |
import gradio as gr | |
from x_transformer_1_23_2 import * | |
import random | |
from statistics import mode | |
import tqdm | |
from midi_to_colab_audio import midi_to_colab_audio | |
import TMIDIX | |
import matplotlib.pyplot as plt | |
# in_space = os.getenv("SYSTEM") == "spaces" | |
# ================================================================================================= | |
# @spaces.GPU | |
def classify_GPU(input_data): | |
print('Loading model...') | |
SEQ_LEN = 1024 | |
PAD_IDX = 14627 | |
DEVICE = 'cpu' # 'cuda' | |
# instantiate the model | |
model = TransformerWrapper( | |
num_tokens = PAD_IDX+1, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 1024, depth = 12, heads = 16, attn_flash = True) | |
) | |
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) | |
model.to(DEVICE) | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model.load_state_dict( | |
torch.load('Annotated_MIDI_Dataset_Classifier_Trained_Model_21269_steps_0.4335_loss_0.8716_acc.pth', | |
map_location=DEVICE)) | |
print('=' * 70) | |
model.eval() | |
if DEVICE == 'cpu': | |
dtype = torch.bfloat16 | |
else: | |
dtype = torch.bfloat16 | |
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) | |
print('Done!') | |
print('=' * 70) | |
#================================================================== | |
number_of_batches = 1 # @param {type:"slider", min:1, max:100, step:1} | |
# @markdown NOTE: You can increase the number of batches on high-ram GPUs for better classification | |
print('=' * 70) | |
print('Annotated MIDI Dataset Classifier') | |
print('=' * 70) | |
print('Classifying...') | |
torch.cuda.empty_cache() | |
model.eval() | |
results = [] | |
for input in input_data: | |
x = torch.tensor([input[:1022]] * number_of_batches, dtype=torch.long, device=DEVICE) | |
with ctx: | |
out = model.generate(x, | |
1, | |
temperature=0.9, | |
filter_logits_fn=top_k, | |
filter_kwargs={'k': 1}, | |
return_prime=False, | |
verbose=False) | |
y = out.tolist() | |
output = [l[0] for l in y] | |
result = mode(output) | |
results.append(result) | |
return output, results | |
# ================================================================================================= | |
def ClassifyMIDI(input_midi): | |
SEQ_LEN = 1024 | |
PAD_IDX = 14627 | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('=' * 70) | |
fn = os.path.basename(input_midi.name) | |
fn1 = fn.split('.')[0] | |
print('-' * 70) | |
print('Input file name:', fn) | |
print('=' * 70) | |
print('Loading MIDI file...') | |
midi_name = fn | |
raw_score = TMIDIX.midi2single_track_ms_score(open(input_midi.name, 'rb').read()) | |
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
escore = [e for e in TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) if e[6] < 80] | |
cscore = TMIDIX.chordify_score([1000, escore]) | |
#======================================================= | |
# MAIN PROCESSING CYCLE | |
#======================================================= | |
melody_chords = [] | |
pe = cscore[0][0] | |
for c in cscore: | |
pitches = [] | |
for e in c: | |
if e[4] not in pitches: | |
dtime = max(0, min(127, e[1]-pe[1])) | |
dur = max(1, min(127, e[2])) | |
ptc = max(1, min(127, e[4])) | |
melody_chords.append([dtime, dur, ptc]) | |
pitches.append(ptc) | |
pe = e | |
#============================================================== | |
seq = [] | |
input_data = [] | |
notes_counter = 0 | |
for mm in melody_chords: | |
time = mm[0] | |
dur = mm[1] | |
ptc = mm[2] | |
seq.extend([time, dur+128, ptc+256]) | |
notes_counter += 1 | |
for i in range(0, len(seq)-SEQ_LEN-4, (SEQ_LEN-4) // 4): | |
schunk = seq[i:i+SEQ_LEN-4] | |
input_data.append([14624] + schunk + [14625]) | |
print('Done!') | |
print('=' * 70) | |
#============================================================== | |
classification_summary_string = '=' * 70 | |
classification_summary_string += '\n' | |
print('Composition has', notes_counter, 'notes') | |
print('=' * 70) | |
print('Composition was split into' , len(input_data), 'chunks of 340 notes each with 255 notes overlap') | |
print('Number of notes in all composition chunks:', len(input_data) * 340) | |
classification_summary_string += 'Composition has ' + str(notes_counter) + ' notes\n' | |
classification_summary_string += '=' * 70 | |
classification_summary_string += '\n' | |
classification_summary_string += 'Composition was split into ' + str(len(input_data)) + ' chunks of 340 notes each with 170 notes overlap\n' | |
classification_summary_string += 'Number of notes in all composition chunks: ' + str(len(input_data) * 340) + '\n' | |
classification_summary_string += '=' * 70 | |
classification_summary_string += '\n' | |
output, results = classify_GPU(input_data) | |
all_results_labels = [classifier_labels[0][r-384] for r in results] | |
final_result = mode(results) | |
print('Done!') | |
print('=' * 70) | |
print('Most common classification label:', classifier_labels[0][final_result-384]) | |
print('Most common classification label ratio:' , results.count(final_result) / len(results)) | |
print('Most common classification label index', final_result) | |
print('=' * 70) | |
classification_summary_string += 'Most common classification label: ' + str(classifier_labels[0][final_result-384]) + '\n' | |
classification_summary_string += 'Most common classification label ratio: ' + str(results.count(final_result) / len(results)) + '\n' | |
classification_summary_string += 'Most common classification label index '+ str(final_result) + '\n' | |
classification_summary_string += '=' * 70 | |
classification_summary_string += '\n' | |
print('All classification labels summary:') | |
print('=' * 70) | |
for i, a in enumerate(all_results_labels): | |
print('Notes', i*85, '-', (i*85)+340, '===', a) | |
classification_summary_string += 'Notes ' + str(i*85) + ' - ' + str((i*85)+340) + ' === ' + str(a) + '\n' | |
classification_summary_string += '=' * 70 | |
classification_summary_string += '\n' | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
print('Rendering results...') | |
score_idx = processed_scores_labels.index(classifier_labels[0][final_result-384]) | |
output_score = processed_scores[score_idx][1][:6000] | |
print('=' * 70) | |
print('Sample INTs', results[:15]) | |
print('=' * 70) | |
fn1 = processed_scores[score_idx][0] | |
output_score = TMIDIX.recalculate_score_timings(output_score) | |
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score) | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, | |
output_signature = 'Advanced MIDI Classifier', | |
output_file_name = fn1, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches, | |
timings_multiplier=16 | |
) | |
new_fn = fn1+'.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=soundfont, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#======================================================== | |
output_midi_title = str(fn1) | |
output_midi_summary = classification_summary_string | |
output_midi = str(new_fn) | |
output_audio = (16000, audio) | |
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True, timings_multiplier=16) | |
print('Output MIDI file name:', output_midi) | |
print('Output MIDI title:', output_midi_title) | |
print('=' * 70) | |
#======================================================== | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot | |
# ================================================================================================= | |
if __name__ == "__main__": | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
print('Loading Annotated MIDI Dataset processed scores...') | |
processed_scores = TMIDIX.Tegridy_Any_Pickle_File_Reader('processed_scores') | |
processed_scores_labels = [l[0] for l in processed_scores] | |
print('=' * 70) | |
print('Loading Annotated MIDI Dataset Classifier Songs Artists Labels...') | |
classifier_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Annotated_MIDI_Dataset_Classifier_Songs_Artists_Labels') | |
print('=' * 70) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Advanced MIDI Classifier</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Detailed MIDI classification with transformers</h1>") | |
gr.Markdown( | |
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Advanced-MIDI-Classifier&style=flat)\n\n" | |
"This is a demo for Annotated MIDI Dataset\n\n" | |
"Check out [Annotated MIDI Dataset](https://huggingface.co/datasets/asigalov61/Annotated-MIDI-Dataset) on Hugging Face!\n\n" | |
) | |
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) | |
run_btn = gr.Button("classify", variant="primary") | |
gr.Markdown("## Classification results") | |
output_midi_title = gr.Textbox(label="Best classification match MIDI title") | |
output_midi_summary = gr.Textbox(label="MIDI classification summary") | |
output_audio = gr.Audio(label="Best classification match MIDI audio", format="wav", elem_id="midi_audio") | |
output_plot = gr.Plot(label="Best classification match MIDI score plot") | |
output_midi = gr.File(label="Best classification match MIDI file", file_types=[".mid"]) | |
run_event = run_btn.click(ClassifyMIDI, [input_midi], | |
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) | |
app.queue().launch() |