# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Classifier import os import time as reqtime import datetime from pytz import timezone import torch # import spaces import gradio as gr from x_transformer_1_23_2 import * import random from statistics import mode import tqdm from midi_to_colab_audio import midi_to_colab_audio import TMIDIX import matplotlib.pyplot as plt # in_space = os.getenv("SYSTEM") == "spaces" # ================================================================================================= # @spaces.GPU def classify_GPU(input_data): print('Loading model...') SEQ_LEN = 1024 PAD_IDX = 14627 DEVICE = 'cpu' # 'cuda' # instantiate the model model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 1024, depth = 12, heads = 16, attn_flash = True) ) model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) model.to(DEVICE) print('=' * 70) print('Loading model checkpoint...') model.load_state_dict( torch.load('Annotated_MIDI_Dataset_Classifier_Trained_Model_21269_steps_0.4335_loss_0.8716_acc.pth', map_location=DEVICE)) print('=' * 70) model.eval() if DEVICE == 'cpu': dtype = torch.bfloat16 else: dtype = torch.bfloat16 ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) print('Done!') print('=' * 70) #================================================================== number_of_batches = 1 # @param {type:"slider", min:1, max:100, step:1} # @markdown NOTE: You can increase the number of batches on high-ram GPUs for better classification print('=' * 70) print('Annotated MIDI Dataset Classifier') print('=' * 70) print('Classifying...') torch.cuda.empty_cache() model.eval() results = [] for input in input_data: x = torch.tensor([input[:1022]] * number_of_batches, dtype=torch.long, device=DEVICE) with ctx: out = model.generate(x, 1, temperature=0.9, filter_logits_fn=top_k, filter_kwargs={'k': 1}, return_prime=False, verbose=False) y = out.tolist() output = [l[0] for l in y] result = mode(output) results.append(result) return output, results # ================================================================================================= def ClassifyMIDI(input_midi): SEQ_LEN = 1024 PAD_IDX = 14627 print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) fn = os.path.basename(input_midi.name) fn1 = fn.split('.')[0] print('-' * 70) print('Input file name:', fn) print('=' * 70) print('Loading MIDI file...') midi_name = fn raw_score = TMIDIX.midi2single_track_ms_score(open(input_midi.name, 'rb').read()) escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] escore = [e for e in TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) if e[6] < 80] cscore = TMIDIX.chordify_score([1000, escore]) #======================================================= # MAIN PROCESSING CYCLE #======================================================= melody_chords = [] pe = cscore[0][0] for c in cscore: pitches = [] for e in c: if e[4] not in pitches: dtime = max(0, min(127, e[1]-pe[1])) dur = max(1, min(127, e[2])) ptc = max(1, min(127, e[4])) melody_chords.append([dtime, dur, ptc]) pitches.append(ptc) pe = e #============================================================== seq = [] input_data = [] notes_counter = 0 for mm in melody_chords: time = mm[0] dur = mm[1] ptc = mm[2] seq.extend([time, dur+128, ptc+256]) notes_counter += 1 for i in range(0, len(seq)-SEQ_LEN-4, (SEQ_LEN-4) // 4): schunk = seq[i:i+SEQ_LEN-4] input_data.append([14624] + schunk + [14625]) print('Done!') print('=' * 70) #============================================================== classification_summary_string = '=' * 70 classification_summary_string += '\n' print('Composition has', notes_counter, 'notes') print('=' * 70) print('Composition was split into' , len(input_data), 'chunks of 340 notes each with 255 notes overlap') print('Number of notes in all composition chunks:', len(input_data) * 340) classification_summary_string += 'Composition has ' + str(notes_counter) + ' notes\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' classification_summary_string += 'Composition was split into ' + str(len(input_data)) + ' chunks of 340 notes each with 170 notes overlap\n' classification_summary_string += 'Number of notes in all composition chunks: ' + str(len(input_data) * 340) + '\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' output, results = classify_GPU(input_data) all_results_labels = [classifier_labels[0][r-384] for r in results] final_result = mode(results) print('Done!') print('=' * 70) print('Most common classification label:', classifier_labels[0][final_result-384]) print('Most common classification label ratio:' , results.count(final_result) / len(results)) print('Most common classification label index', final_result) print('=' * 70) classification_summary_string += 'Most common classification label: ' + str(classifier_labels[0][final_result-384]) + '\n' classification_summary_string += 'Most common classification label ratio: ' + str(results.count(final_result) / len(results)) + '\n' classification_summary_string += 'Most common classification label index '+ str(final_result) + '\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' print('All classification labels summary:') print('=' * 70) for i, a in enumerate(all_results_labels): print('Notes', i*85, '-', (i*85)+340, '===', a) classification_summary_string += 'Notes ' + str(i*85) + ' - ' + str((i*85)+340) + ' === ' + str(a) + '\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') score_idx = processed_scores_labels.index(classifier_labels[0][final_result-384]) output_score = processed_scores[score_idx][1][:6000] print('=' * 70) print('Sample INTs', results[:15]) print('=' * 70) fn1 = processed_scores[score_idx][0] output_score = TMIDIX.recalculate_score_timings(output_score) output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score) detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, output_signature = 'Advanced MIDI Classifier', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches, timings_multiplier=16 ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=soundfont, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_midi_title = str(fn1) output_midi_summary = classification_summary_string output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True, timings_multiplier=16) print('Output MIDI file name:', output_midi) print('Output MIDI title:', output_midi_title) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot # ================================================================================================= if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" print('Loading Annotated MIDI Dataset processed scores...') processed_scores = TMIDIX.Tegridy_Any_Pickle_File_Reader('processed_scores') processed_scores_labels = [l[0] for l in processed_scores] print('=' * 70) print('Loading Annotated MIDI Dataset Classifier Songs Artists Labels...') classifier_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Annotated_MIDI_Dataset_Classifier_Songs_Artists_Labels') print('=' * 70) app = gr.Blocks() with app: gr.Markdown("