#================================================================== # https://huggingface.co/spaces/asigalov61/Popular-Hook-Transformer #================================================================== import time as reqtime import datetime from pytz import timezone import statistics import re import tqdm import gradio as gr import spaces from x_transformer_1_23_2 import * import random from midi_to_colab_audio import midi_to_colab_audio import TMIDIX import matplotlib.pyplot as plt #===================================================================================== print('=' * 70) print('Popular Hook Transformer') print('=' * 70) print('Loading Popular Hook Transformer training data...') print('=' * 70) melody_chords_f = TMIDIX.Tegridy_Any_Pickle_File_Reader('Popular_Hook_Transformer_Training_Data.pickle') print('=' * 70) #==================================================================================== SEQ_LEN = 512 PAD_IDX = 918 DEVICE = 'cuda' #==================================================================================== def str_strip(string): return re.sub(r'[^A-Za-z-]+', '', string).rstrip('-') def mode_time(seq): return statistics.mode([t for t in seq if 0 < t < 128]) def mode_dur(seq): return statistics.mode([t-128 for t in seq if 128 < t < 256]) def mode_pitch(seq): return statistics.mode([t % 128 for t in seq if 256 < t < 512]) sections_dict = sorted(set([str_strip(s[2]).rstrip('-') for s in melody_chords_f])) train_data = [] for m in tqdm.tqdm(melody_chords_f): if 64 < len(m[5]) < 506: for tv in range(-3, 3): section = str_strip(m[2]) section_tok = sections_dict.index(section) score = [t+tv if 256 < t < 512 else t for t in m[5]] seq = [916] + [section_tok+512, mode_time(score)+532, mode_dur(score)+660, mode_pitch(score)+tv+788] seq += score seq += [917] seq = seq + [PAD_IDX] * (SEQ_LEN - len(seq)) train_data.append(seq) #==================================================================================== print('Done!') print('=' * 70) print('All data is good:', len(max(train_data, key=len)) == len(min(train_data, key=len))) print('=' * 70) print('Randomizing training data...') random.shuffle(train_data) print('Done!') print('=' * 70) print('Total length of training data:', len(train_data)) print('=' * 70) #==================================================================================== print('Loading Popular Hook Transformer pre-trained model...') print('=' * 70) print('Instantiating model...') model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 1024, depth = 4, heads = 32, rotary_pos_emb = True, attn_flash = True ) ) model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX) print('=' * 70) print('Loading model checkpoint...') model_path = 'Popular_Hook_Transformer_Small_Trained_Model_10869_steps_0.2308_loss_0.9252_acc.pth' model.load_state_dict(torch.load(model_path, map_location='cpu')) print('Done!') print('=' * 70) #==================================================================================== @spaces.GPU def Generate_POP_Section(input_comp_section, input_mode_time, input_mode_dur, input_mode_ptc ): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) print('Requested settings:') print('-' * 70) print('Composition section:', input_comp_section) print('Mode time:', input_mode_time) print('Mode duration:', input_mode_dur) print('Mode pitch:', input_mode_ptc) print('=' * 70) #=============================================================================== print('Generating...') if input_comp_section == 'random': seq = [916] else: seq = [916, sections_dict.index(input_comp_section)+512] input_seq = [input_mode_time, input_mode_dur, input_mode_ptc] input_seq_toks = [input_mode_time+532, input_mode_dur+660, input_mode_ptc+788] if 0 in input_seq: input_seq = input_seq_toks[:input_seq.index(0)] else: input_seq = input_seq_toks seq += input_seq model.to(DEVICE) model.eval() x = torch.LongTensor(seq).to(DEVICE) with torch.amp.autocast(device_type=DEVICE, dtype=torch.bfloat16): out = model.generate(x, 512-len(seq), temperature=0.9, filter_logits_fn=top_p, filter_kwargs={'thres': 0.96}, eos_token=917, return_prime=True, verbose=True) song = out.tolist()[0] print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') print('=' * 70) comp_section = sections_dict[song[1]-512] comp_mode_time = song[2]-532 comp_mode_dur = song[3]-660 comp_mode_ptc = song[4]-788 comp_summary = '' comp_summary += 'Generated section: ' + str(comp_section) + '\n' comp_summary += 'Generated mode time: ' + str(comp_mode_time) + '\n' comp_summary += 'Generated mode duration: ' + str(comp_mode_dur) + '\n' comp_summary += 'Generated mode pitch :' + str(comp_mode_ptc) print('Sample INTs', song[:5]) print('=' * 70) song_f = [] time = 0 dur = 0 vel = 90 pitch = 0 channel = 0 for ss in song: if 0 <= ss < 128: time += ss * 32 if 128 <= ss < 256: dur = (ss-128)* 32 if 256 <= ss < 512: pitch = (ss-256) % 128 cha = (ss-256) // 128 if cha == 0: channel = 3 vel = 110+(pitch % 12) patch = 40 else: channel = 0 vel = max(40, pitch) patch = 0 song_f.append(['note', time, dur, channel, pitch, vel, patch ]) fn1 = 'Popular-Hook-Transformer-Composition' detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, output_signature = 'Popular Hook Transformer', output_file_name = fn1, track_name='Project Los Angeles' ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=soundfont, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_midi_title = str(fn1) output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi_title, return_plt=True) print('Output MIDI file name:', output_midi) print('Output MIDI title:', output_midi_title) print('Output MIDI summary', comp_summary) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_midi_title, comp_summary, output_midi, output_audio, output_plot # ================================================================================================= if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" app = gr.Blocks() with app: gr.Markdown("

Popular Hook Transformer

") gr.Markdown("

Generate unique POP music sections

") gr.Markdown( "This is a demo for popular-hook MIDI Dataset\n\n" "Check out [popular-hook](https://huggingface.co/datasets/NEXTLab-ZJU/popular-hook) on Hugging Face!\n\n" ) gr.Markdown("## Select POP composition section to generate:") input_comp_section = gr.Dropdown(sections_dict + ['random'], label="Composition section", value='random') gr.Markdown("## Select generation options:") input_mode_time = gr.Slider(0, 127, value=0, step=1, label="Composition mode time") input_mode_dur = gr.Slider(0, 127, value=0, step=1, label="Composition mode dur") input_mode_ptc = gr.Slider(0, 127, value=0, step=1, label="Composition mode pitch") run_btn = gr.Button("Generate", variant="primary") gr.Markdown("## Output results") output_midi_title = gr.Textbox(label="Output MIDI title") output_midi_summary = gr.Textbox(label="Output MIDI summary") output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio") output_plot = gr.Plot(label="Output MIDI score plot") output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) run_event = run_btn.click(Generate_POP_Section, [input_comp_section, input_mode_time, input_mode_dur, input_mode_ptc ], [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot] ) gr.Examples([["intro", 10, 15, 60], ], [input_comp_section, input_mode_time, input_mode_dur, input_mode_ptc ], [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot], Generate_POP_Section, cache_examples=True, cache_mode='eager' ) app.queue().launch()