Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import glob | |
import os.path | |
import torch | |
import torch.nn.functional as F | |
import gradio as gr | |
import numpy as np | |
import onnxruntime as rt | |
import tqdm | |
import json | |
from midi_synthesizer import synthesis | |
import TMIDIX | |
in_space = os.getenv("SYSTEM") == "spaces" | |
providers = ['CPUExecutionProvider'] | |
#================================================================================================= | |
def generate( | |
start_tokens, | |
seq_len, | |
max_seq_len = 2048, | |
temperature = 0.9, | |
verbose=True, | |
return_prime=False, | |
): | |
out = torch.LongTensor([start_tokens]) | |
st = len(start_tokens) | |
if verbose: | |
print("Generating sequence of max length:", seq_len) | |
for s in range(seq_len): | |
x = out[:, -max_seq_len:] | |
torch_in = x.tolist()[0] | |
logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1] | |
filtered_logits = logits | |
probs = F.softmax(filtered_logits / temperature, dim=-1) | |
sample = torch.multinomial(probs, 1) | |
out = torch.cat((out, sample), dim=-1) | |
if verbose: | |
if s % 32 == 0: | |
print(s, '/', seq_len) | |
if return_prime: | |
return out[:, :] | |
else: | |
return out[:, st:] | |
#================================================================================================= | |
def load_javascript(dir="javascript"): | |
scripts_list = glob.glob(f"{dir}/*.js") | |
javascript = "" | |
for path in scripts_list: | |
with open(path, "r", encoding="utf8") as jsfile: | |
javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>" | |
template_response_ori = gr.routes.templates.TemplateResponse | |
def template_response(*args, **kwargs): | |
res = template_response_ori(*args, **kwargs) | |
res.body = res.body.replace( | |
b'</head>', f'{javascript}</head>'.encode("utf8")) | |
res.init_headers() | |
return res | |
gr.routes.templates.TemplateResponse = template_response | |
class JSMsgReceiver(gr.HTML): | |
def __init__(self, **kwargs): | |
super().__init__(elem_id="msg_receiver", visible=False, **kwargs) | |
def postprocess(self, y): | |
if y: | |
y = f"<p>{json.dumps(y)}</p>" | |
return super().postprocess(y) | |
def get_block_name(self) -> str: | |
return "html" | |
#================================================================================================= | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
parser.add_argument("--port", type=int, default=7860, help="gradio server port") | |
parser.add_argument("--max-gen", type=int, default=1024, help="max") | |
opt = parser.parse_args() | |
providers = ['CPUExecutionProvider'] | |
# session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=providers) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>") | |
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n" | |
"Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n" | |
"Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n" | |
"[Open In Colab]" | |
"(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)" | |
" for faster execution and endless generation" | |
) | |
js_msg = JSMsgReceiver() | |
tab_select = gr.Variable(value=0) | |
app.queue(2).launch(server_port=opt.port, share=opt.share, inbrowser=True) |