|
import argparse |
|
import glob |
|
import os.path |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
import gradio as gr |
|
|
|
import onnxruntime as rt |
|
import tqdm |
|
|
|
from midi_synthesizer import synthesis |
|
import TMIDIX |
|
|
|
in_space = os.getenv("SYSTEM") == "spaces" |
|
|
|
|
|
|
|
def GenerateMIDI(): |
|
|
|
start_tokens = [3087, 3073+1, 3075+1] |
|
seq_len = 512 |
|
max_seq_len = 2048 |
|
temperature = 0.9 |
|
verbose=False |
|
return_prime=False |
|
progress=gr.Progress() |
|
|
|
out = torch.LongTensor([start_tokens]) |
|
|
|
st = len(start_tokens) |
|
|
|
if verbose: |
|
print("Generating sequence of max length:", seq_len) |
|
|
|
progress(0, desc="Starting...") |
|
|
|
for i in progress.tqdm(range(seq_len)): |
|
|
|
try: |
|
|
|
x = out[:, -max_seq_len:] |
|
|
|
torch_in = x.tolist()[0] |
|
|
|
logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1] |
|
|
|
filtered_logits = logits |
|
|
|
probs = F.softmax(filtered_logits / temperature, dim=-1) |
|
|
|
sample = torch.multinomial(probs, 1) |
|
|
|
out = torch.cat((out, sample), dim=-1) |
|
|
|
except Exception as e: |
|
print('Error', e) |
|
break |
|
|
|
if return_prime: |
|
melody_chords_f = out[:, :] |
|
|
|
else: |
|
melody_chords_f = out[:, st:] |
|
|
|
melody_chords_f = melody_chords_f.tolist()[0] |
|
|
|
print('=' * 70) |
|
print('Sample INTs', melody_chords_f[:12]) |
|
print('=' * 70) |
|
|
|
if len(melody_chords_f) != 0: |
|
|
|
song = melody_chords_f |
|
song_f = [] |
|
time = 0 |
|
dur = 0 |
|
vel = 0 |
|
pitch = 0 |
|
channel = 0 |
|
|
|
for ss in song: |
|
|
|
if ss > 0 and ss < 256: |
|
|
|
time += ss * 8 |
|
|
|
if ss >= 256 and ss < 1280: |
|
|
|
dur = ((ss-256) // 8) * 32 |
|
vel = (((ss-256) % 8)+1) * 15 |
|
|
|
if ss >= 1280 and ss < 2816: |
|
channel = (ss-1280) // 128 |
|
pitch = (ss-1280) % 128 |
|
|
|
song_f.append(['note', time, dur, channel, pitch, vel ]) |
|
|
|
|
|
output_signature = 'Allegro Music Transformer' |
|
output_file_name = 'Allegro-Music-Transformer-Music-Composition' |
|
track_name='Project Los Angeles' |
|
list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0] |
|
number_of_ticks_per_quarter=500 |
|
text_encoding='ISO-8859-1' |
|
|
|
output_header = [number_of_ticks_per_quarter, |
|
[['track_name', 0, bytes(output_signature, text_encoding)]]] |
|
|
|
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], |
|
['patch_change', 0, 1, list_of_MIDI_patches[1]], |
|
['patch_change', 0, 2, list_of_MIDI_patches[2]], |
|
['patch_change', 0, 3, list_of_MIDI_patches[3]], |
|
['patch_change', 0, 4, list_of_MIDI_patches[4]], |
|
['patch_change', 0, 5, list_of_MIDI_patches[5]], |
|
['patch_change', 0, 6, list_of_MIDI_patches[6]], |
|
['patch_change', 0, 7, list_of_MIDI_patches[7]], |
|
['patch_change', 0, 8, list_of_MIDI_patches[8]], |
|
['patch_change', 0, 9, list_of_MIDI_patches[9]], |
|
['patch_change', 0, 10, list_of_MIDI_patches[10]], |
|
['patch_change', 0, 11, list_of_MIDI_patches[11]], |
|
['patch_change', 0, 12, list_of_MIDI_patches[12]], |
|
['patch_change', 0, 13, list_of_MIDI_patches[13]], |
|
['patch_change', 0, 14, list_of_MIDI_patches[14]], |
|
['patch_change', 0, 15, list_of_MIDI_patches[15]], |
|
['track_name', 0, bytes(track_name, text_encoding)]] |
|
|
|
output = output_header + [patch_list + song_f] |
|
|
|
midi_data = TMIDIX.score2midi(output, text_encoding) |
|
|
|
with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f: |
|
f.write(midi_data) |
|
|
|
audio = synthesis(TMIDIX.score2opus(output), 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2') |
|
|
|
yield output, "Allegro-Music-Transformer-Music-Composition.mid", (44100, audio) |
|
|
|
|
|
|
|
def cancel_run(output_midi_seq): |
|
if output_midi_seq is None: |
|
return None, None |
|
with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f: |
|
f.write(TMIDIX.score2midi(output_midi_seq)) |
|
audio = synthesis(TMIDIX.score2opus(output_midi_seq), 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2') |
|
return "Allegro-Music-Transformer-Music-Composition.mid", (44100, audio) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") |
|
parser.add_argument("--port", type=int, default=7860, help="gradio server port") |
|
opt = parser.parse_args() |
|
|
|
print('Loading model...') |
|
session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
print('Done!') |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>") |
|
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n" |
|
"Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n" |
|
"Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)" |
|
" for faster execution and endless generation" |
|
) |
|
|
|
run_btn = gr.Button("generate", variant="primary") |
|
stop_btn = gr.Button("stop and output") |
|
|
|
output_midi_seq = gr.Variable() |
|
output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container") |
|
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio") |
|
output_midi = gr.File(label="output midi", file_types=[".mid"]) |
|
run_event = run_btn.click(GenerateMIDI, [], [output_midi_seq, output_midi, output_audio]) |
|
stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio], cancels=run_event, queue=False) |
|
|
|
app.queue(2).launch(server_port=opt.port, share=opt.share, inbrowser=True) |