|
import os.path |
|
|
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
import torch |
|
|
|
import spaces |
|
import gradio as gr |
|
|
|
from x_transformer_1_23_2 import * |
|
import random |
|
import tqdm |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
in_space = os.getenv("SYSTEM") == "spaces" |
|
|
|
|
|
|
|
@spaces.GPU |
|
def GenerateDrums(input_midi, input_num_tokens): |
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('Loading model...') |
|
|
|
SEQ_LEN = 8192 |
|
PAD_IDX = 393 |
|
DEVICE = 'cuda' |
|
|
|
|
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 1024, depth = 4, heads = 16, attn_flash = True) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) |
|
|
|
model.to(DEVICE) |
|
print('=' * 70) |
|
|
|
print('Loading model checkpoint...') |
|
|
|
model.load_state_dict( |
|
torch.load('Ultimate_Drums_Transformer_Small_Trained_Model_VER4_RST_VEL_4L_9107_steps_0.5467_loss_0.8231_acc.pth', |
|
map_location=DEVICE)) |
|
print('=' * 70) |
|
|
|
model.eval() |
|
|
|
if DEVICE == 'cpu': |
|
dtype = torch.bfloat16 |
|
else: |
|
dtype = torch.bfloat16 |
|
|
|
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
fn = os.path.basename(input_midi.name) |
|
fn1 = fn.split('.')[0] |
|
|
|
input_num_tokens = max(16, min(2048, input_num_tokens)) |
|
|
|
print('-' * 70) |
|
print('Input file name:', fn) |
|
print('Req num toks:', input_num_tokens) |
|
print('-' * 70) |
|
|
|
|
|
|
|
|
|
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) |
|
|
|
|
|
|
|
|
|
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
escore_notes = [e for e in escore_notes if e[3] != 9] |
|
|
|
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) |
|
|
|
patches = TMIDIX.patch_list_from_enhanced_score_notes(escore_notes) |
|
|
|
dscore = TMIDIX.delta_score_notes(escore_notes) |
|
|
|
cscore = TMIDIX.chordify_score([d[1:] for d in dscore]) |
|
|
|
cscore_melody = [c[0] for c in cscore] |
|
|
|
comp_times = [t[1] for t in dscore if t[1] != 0] |
|
|
|
comp_times = comp_times + [comp_times[-1]] |
|
|
|
|
|
|
|
print('=' * 70) |
|
|
|
print('Sample output events', escore_notes[:5]) |
|
print('=' * 70) |
|
print('Generating...') |
|
|
|
output = [] |
|
|
|
temperature=0.9 |
|
max_drums_limit=3 |
|
num_memory_tokens=4096 |
|
|
|
for c in comp_times[:input_num_tokens]: |
|
output.append(c) |
|
|
|
x = torch.tensor([output] * 1, dtype=torch.long, device=DEVICE) |
|
|
|
o = 128 |
|
|
|
ncount = 0 |
|
|
|
time = 0 |
|
ntime = output[-1] |
|
|
|
while o > 127 and ncount < max_drums_limit and time < ntime: |
|
with ctx: |
|
out = model.generate(x[-num_memory_tokens:], |
|
1, |
|
temperature=temperature, |
|
return_prime=False, |
|
verbose=False) |
|
|
|
o = out.tolist()[0][0] |
|
|
|
if 128 <= o < 256: |
|
time += (o-128) |
|
ncount = 0 |
|
|
|
if 256 < o < 384: |
|
ncount += 1 |
|
|
|
if o > 127 and time < ntime: |
|
x = torch.cat((x, out), 1) |
|
|
|
x_output = x.tolist()[0][len(output):] |
|
|
|
output.extend(x_output) |
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
print('Rendering results...') |
|
|
|
print('=' * 70) |
|
print('Sample INTs', output[:12]) |
|
print('=' * 70) |
|
|
|
if len(output) != 0: |
|
|
|
song = output |
|
song_f = [] |
|
|
|
time = 0 |
|
dtime = 0 |
|
ntime = 0 |
|
ptime = 0 |
|
dur = 32 |
|
vel = 90 |
|
vels = [100, 120] |
|
pitch = 0 |
|
channel = 0 |
|
|
|
idx = 0 |
|
|
|
for ss in song: |
|
|
|
if 0 <= ss < 128: |
|
|
|
dtime = ptime = time |
|
|
|
time += cscore[idx][0][0] * 32 |
|
|
|
for c in cscore[idx]: |
|
song_f.append(['note', time, c[1] * 32, c[2], c[3], c[4], c[5]]) |
|
|
|
dtime = time |
|
|
|
idx += 1 |
|
|
|
if 128 <= ss < 256: |
|
|
|
dtime += (ss-128) * 32 |
|
|
|
if 256 < ss < 384: |
|
|
|
pitch = (ss-256) |
|
|
|
if 384 < ss < 393: |
|
|
|
vel = (ss-384) * 15 |
|
|
|
song_f.append(['note', dtime, dur, 9, pitch, vel, 128]) |
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, |
|
output_signature = 'Ultimate Drums Transformer', |
|
output_file_name = fn1, |
|
track_name='Project Los Angeles', |
|
list_of_MIDI_patches=patches |
|
) |
|
|
|
new_fn = fn1+'.mid' |
|
|
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
soundfont_path=soundfont, |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
output_midi_title = str(fn1) |
|
output_midi_summary = str(song_f[:3]) |
|
output_midi = str(new_fn) |
|
output_audio = (16000, audio) |
|
|
|
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) |
|
|
|
print('Output MIDI file name:', output_midi) |
|
print('Output MIDI title:', output_midi_title) |
|
print('Output MIDI summary:', '') |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
return [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot] |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Drums Transformer</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique drums track for any MIDI</h1>") |
|
gr.Markdown( |
|
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Drums-Transformer&style=flat)\n\n" |
|
"SOTA pure drums transformer which is capable of drums track generation for any source composition\n\n" |
|
"Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Drums-Transformer) on GitHub!\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/github/asigalov61/Ultimate-Drums-Transformer/blob/main/Ultimate_Drums_Transformer.ipynb)" |
|
" for faster execution and endless generation" |
|
) |
|
gr.Markdown("## Upload your MIDI or select a sample example MIDI") |
|
|
|
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) |
|
input_num_tokens = gr.Slider(16, 2048, value=256, step=16, label="Number of composition chords to generate drums for") |
|
|
|
run_btn = gr.Button("generate", variant="primary") |
|
|
|
gr.Markdown("## Generation results") |
|
|
|
output_midi_title = gr.Textbox(label="Output MIDI title") |
|
output_midi_summary = gr.Textbox(label="Output MIDI summary") |
|
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") |
|
output_plot = gr.Plot(label="Output MIDI score plot") |
|
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) |
|
|
|
|
|
run_event = run_btn.click(GenerateDrums, [input_midi, input_num_tokens], |
|
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) |
|
|
|
gr.Examples( |
|
[["Ultimate-Drums-Transformer-Melody-Seed-1.mid", 128], |
|
["Ultimate-Drums-Transformer-Melody-Seed-2.mid", 128], |
|
["Ultimate-Drums-Transformer-Melody-Seed-3.mid", 128], |
|
["Ultimate-Drums-Transformer-Melody-Seed-4.mid", 128], |
|
["Ultimate-Drums-Transformer-Melody-Seed-5.mid", 128], |
|
["Ultimate-Drums-Transformer-Melody-Seed-6.mid", 128], |
|
["Ultimate-Drums-Transformer-MI-Seed-1.mid", 128], |
|
["Ultimate-Drums-Transformer-MI-Seed-2.mid", 128], |
|
["Ultimate-Drums-Transformer-MI-Seed-3.mid", 128], |
|
["Ultimate-Drums-Transformer-MI-Seed-4.mid", 128]], |
|
[input_midi, input_num_tokens], |
|
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot], |
|
GenerateDrums, |
|
cache_examples=True, |
|
) |
|
|
|
app.queue().launch() |