Spaces:
Running
on
Zero
Running
on
Zero
asigalov61
commited on
Commit
·
8453f63
1
Parent(s):
de46ee3
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,9 @@ import argparse
|
|
2 |
import glob
|
3 |
import os.path
|
4 |
|
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import onnxruntime as rt
|
@@ -13,7 +16,54 @@ import TMIDIX
|
|
13 |
|
14 |
in_space = os.getenv("SYSTEM") == "spaces"
|
15 |
|
16 |
-
providers = ['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def load_javascript(dir="javascript"):
|
19 |
scripts_list = glob.glob(f"{dir}/*.js")
|
@@ -55,7 +105,7 @@ if __name__ == "__main__":
|
|
55 |
opt = parser.parse_args()
|
56 |
|
57 |
|
58 |
-
providers = ['
|
59 |
|
60 |
session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=providers)
|
61 |
|
|
|
2 |
import glob
|
3 |
import os.path
|
4 |
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
import onnxruntime as rt
|
|
|
16 |
|
17 |
in_space = os.getenv("SYSTEM") == "spaces"
|
18 |
|
19 |
+
providers = ['CPUExecutionProvider']
|
20 |
+
|
21 |
+
#=================================================================================================
|
22 |
+
|
23 |
+
def generate(
|
24 |
+
start_tokens,
|
25 |
+
seq_len,
|
26 |
+
max_seq_len = 2048,
|
27 |
+
temperature = 0.9,
|
28 |
+
verbose=True,
|
29 |
+
return_prime=False,
|
30 |
+
):
|
31 |
+
|
32 |
+
out = torch.LongTensor([start_tokens])
|
33 |
+
|
34 |
+
st = len(start_tokens)
|
35 |
+
|
36 |
+
if verbose:
|
37 |
+
print("Generating sequence of max length:", seq_len)
|
38 |
+
|
39 |
+
for s in range(seq_len):
|
40 |
+
x = out[:, -max_seq_len:]
|
41 |
+
|
42 |
+
torch_in = x.tolist()[0]
|
43 |
+
|
44 |
+
logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1]
|
45 |
+
|
46 |
+
filtered_logits = logits
|
47 |
+
|
48 |
+
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
49 |
+
|
50 |
+
sample = torch.multinomial(probs, 1)
|
51 |
+
|
52 |
+
out = torch.cat((out, sample), dim=-1)
|
53 |
+
|
54 |
+
if verbose:
|
55 |
+
if s % 32 == 0:
|
56 |
+
print(s, '/', seq_len)
|
57 |
+
|
58 |
+
if return_prime:
|
59 |
+
return out[:, :]
|
60 |
+
|
61 |
+
else:
|
62 |
+
return out[:, st:]
|
63 |
+
|
64 |
+
|
65 |
+
#=================================================================================================
|
66 |
+
|
67 |
|
68 |
def load_javascript(dir="javascript"):
|
69 |
scripts_list = glob.glob(f"{dir}/*.js")
|
|
|
105 |
opt = parser.parse_args()
|
106 |
|
107 |
|
108 |
+
providers = ['CPUExecutionProvider']
|
109 |
|
110 |
session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=providers)
|
111 |
|