Spaces:
Running
on
Zero
Running
on
Zero
asigalov61
commited on
Commit
·
b6bb234
1
Parent(s):
e59bba8
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import os.path
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
import onnxruntime as rt
|
11 |
+
import tqdm
|
12 |
+
|
13 |
+
from midi_synthesizer import synthesis
|
14 |
+
import TMIDIX
|
15 |
+
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
|
18 |
+
in_space = os.getenv("SYSTEM") == "spaces"
|
19 |
+
|
20 |
+
#=================================================================================================
|
21 |
+
|
22 |
+
@torch.no_grad()
|
23 |
+
def GenerateMIDI(idrums, iinstr, progress=gr.Progress()):
|
24 |
+
|
25 |
+
if idrums:
|
26 |
+
drums = 3074
|
27 |
+
else:
|
28 |
+
drums = 3073
|
29 |
+
|
30 |
+
instruments_list = ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", 'Drums', "Choir", "Organ"]
|
31 |
+
first_note_instrument_number = instruments_list.index(iinstr)
|
32 |
+
|
33 |
+
start_tokens = [3087, drums, 3075+first_note_instrument_number]
|
34 |
+
|
35 |
+
seq_len = 512
|
36 |
+
max_seq_len = 2048
|
37 |
+
temperature = 0.9
|
38 |
+
verbose=False
|
39 |
+
return_prime=False
|
40 |
+
|
41 |
+
|
42 |
+
out = torch.FloatTensor([start_tokens])
|
43 |
+
|
44 |
+
st = len(start_tokens)
|
45 |
+
|
46 |
+
if verbose:
|
47 |
+
print("Generating sequence of max length:", seq_len)
|
48 |
+
|
49 |
+
progress(0, desc="Starting...")
|
50 |
+
step = 0
|
51 |
+
|
52 |
+
for i in progress.tqdm(range(seq_len)):
|
53 |
+
|
54 |
+
try:
|
55 |
+
x = out[:, -max_seq_len:]
|
56 |
+
|
57 |
+
torch_in = x.tolist()[0]
|
58 |
+
|
59 |
+
logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1]
|
60 |
+
|
61 |
+
probs = F.softmax(logits / temperature, dim=-1)
|
62 |
+
|
63 |
+
sample = torch.multinomial(probs, 1)
|
64 |
+
|
65 |
+
out = torch.cat((out, sample), dim=-1)
|
66 |
+
|
67 |
+
if step % 16 == 0:
|
68 |
+
print(step, '/', seq_len)
|
69 |
+
|
70 |
+
step += 1
|
71 |
+
|
72 |
+
if step >= seq_len:
|
73 |
+
break
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
print('Error', e)
|
77 |
+
break
|
78 |
+
|
79 |
+
if return_prime:
|
80 |
+
melody_chords_f = out[:, :]
|
81 |
+
|
82 |
+
else:
|
83 |
+
melody_chords_f = out[:, st:]
|
84 |
+
|
85 |
+
melody_chords_f = melody_chords_f.tolist()[0]
|
86 |
+
|
87 |
+
print('=' * 70)
|
88 |
+
print('Sample INTs', melody_chords_f[:12])
|
89 |
+
print('=' * 70)
|
90 |
+
|
91 |
+
if len(melody_chords_f) != 0:
|
92 |
+
|
93 |
+
song = melody_chords_f
|
94 |
+
song_f = []
|
95 |
+
time = 0
|
96 |
+
dur = 0
|
97 |
+
vel = 0
|
98 |
+
pitch = 0
|
99 |
+
channel = 0
|
100 |
+
|
101 |
+
for ss in song:
|
102 |
+
|
103 |
+
ss1 = int(ss)
|
104 |
+
|
105 |
+
if ss1 > 0 and ss1 < 256:
|
106 |
+
|
107 |
+
time += ss1 * 8
|
108 |
+
|
109 |
+
if ss1 >= 256 and ss1 < 1280:
|
110 |
+
|
111 |
+
dur = ((ss1-256) // 8) * 32
|
112 |
+
vel = (((ss1-256) % 8)+1) * 15
|
113 |
+
|
114 |
+
if ss1 >= 1280 and ss1 < 2816:
|
115 |
+
channel = (ss1-1280) // 128
|
116 |
+
pitch = (ss1-1280) % 128
|
117 |
+
|
118 |
+
song_f.append(['note', int(time), int(dur), int(channel), int(pitch), int(vel) ])
|
119 |
+
|
120 |
+
output_signature = 'Allegro Music Transformer'
|
121 |
+
output_file_name = 'Allegro-Music-Transformer-Music-Composition'
|
122 |
+
track_name='Project Los Angeles'
|
123 |
+
list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0]
|
124 |
+
number_of_ticks_per_quarter=500
|
125 |
+
text_encoding='ISO-8859-1'
|
126 |
+
|
127 |
+
output_header = [number_of_ticks_per_quarter,
|
128 |
+
[['track_name', 0, bytes(output_signature, text_encoding)]]]
|
129 |
+
|
130 |
+
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]],
|
131 |
+
['patch_change', 0, 1, list_of_MIDI_patches[1]],
|
132 |
+
['patch_change', 0, 2, list_of_MIDI_patches[2]],
|
133 |
+
['patch_change', 0, 3, list_of_MIDI_patches[3]],
|
134 |
+
['patch_change', 0, 4, list_of_MIDI_patches[4]],
|
135 |
+
['patch_change', 0, 5, list_of_MIDI_patches[5]],
|
136 |
+
['patch_change', 0, 6, list_of_MIDI_patches[6]],
|
137 |
+
['patch_change', 0, 7, list_of_MIDI_patches[7]],
|
138 |
+
['patch_change', 0, 8, list_of_MIDI_patches[8]],
|
139 |
+
['patch_change', 0, 9, list_of_MIDI_patches[9]],
|
140 |
+
['patch_change', 0, 10, list_of_MIDI_patches[10]],
|
141 |
+
['patch_change', 0, 11, list_of_MIDI_patches[11]],
|
142 |
+
['patch_change', 0, 12, list_of_MIDI_patches[12]],
|
143 |
+
['patch_change', 0, 13, list_of_MIDI_patches[13]],
|
144 |
+
['patch_change', 0, 14, list_of_MIDI_patches[14]],
|
145 |
+
['patch_change', 0, 15, list_of_MIDI_patches[15]],
|
146 |
+
['track_name', 0, bytes(track_name, text_encoding)]]
|
147 |
+
|
148 |
+
output = output_header + [patch_list + song_f]
|
149 |
+
|
150 |
+
midi_data = TMIDIX.score2midi(output, text_encoding)
|
151 |
+
|
152 |
+
with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f:
|
153 |
+
f.write(midi_data)
|
154 |
+
|
155 |
+
output1 = []
|
156 |
+
itrack = 1
|
157 |
+
|
158 |
+
opus = TMIDIX.score2opus(output)
|
159 |
+
|
160 |
+
while itrack < len(opus):
|
161 |
+
for event in opus[itrack]:
|
162 |
+
if (event[0] == 'note_on') or (event[0] == 'note_off'):
|
163 |
+
output1.append(event)
|
164 |
+
itrack += 1
|
165 |
+
|
166 |
+
audio = synthesis([500, output1], 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2')
|
167 |
+
|
168 |
+
x = []
|
169 |
+
y =[]
|
170 |
+
c = []
|
171 |
+
|
172 |
+
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver']
|
173 |
+
|
174 |
+
for s in song_f:
|
175 |
+
x.append(s[1] / 1000)
|
176 |
+
y.append(s[4])
|
177 |
+
c.append(colors[s[3]])
|
178 |
+
|
179 |
+
plt.figure(figsize=(14,5))
|
180 |
+
ax=plt.axes(title='Allegro Music Transformer')
|
181 |
+
ax.set_facecolor('black')
|
182 |
+
|
183 |
+
plt.scatter(x,y, c=c)
|
184 |
+
plt.xlabel("Time")
|
185 |
+
plt.ylabel("Pitch")
|
186 |
+
|
187 |
+
yield [500, output1], plt, "Allegro-Music-Transformer-Music-Composition.mid", (44100, audio)
|
188 |
+
|
189 |
+
#=================================================================================================
|
190 |
+
|
191 |
+
if __name__ == "__main__":
|
192 |
+
|
193 |
+
parser = argparse.ArgumentParser()
|
194 |
+
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
|
195 |
+
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
|
196 |
+
opt = parser.parse_args()
|
197 |
+
|
198 |
+
print('Loading model...')
|
199 |
+
session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
200 |
+
print('Done!')
|
201 |
+
|
202 |
+
app = gr.Blocks()
|
203 |
+
with app:
|
204 |
+
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>")
|
205 |
+
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n"
|
206 |
+
"Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n"
|
207 |
+
"Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n"
|
208 |
+
"[Open In Colab]"
|
209 |
+
"(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)"
|
210 |
+
" for faster execution and endless generation"
|
211 |
+
)
|
212 |
+
input_drums = gr.Checkbox(label="Drums Controls", value = True, info="Drums present or not")
|
213 |
+
input_instrument = gr.Radio(["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", "Choir", "Organ"], value="Guitar", label="Lead Instrument Controls", info="Desired lead instrument")
|
214 |
+
run_btn = gr.Button("generate", variant="primary")
|
215 |
+
|
216 |
+
output_midi_seq = gr.Variable()
|
217 |
+
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
|
218 |
+
output_plot = gr.Plot(label="output plot")
|
219 |
+
output_midi = gr.File(label="output midi", file_types=[".mid"])
|
220 |
+
run_event = run_btn.click(GenerateMIDI, [input_drums, input_instrument], [output_midi_seq, output_plot, output_midi, output_audio])
|
221 |
+
|
222 |
+
app.queue(concurrency_count=1).launch(server_port=opt.port, share=opt.share, inbrowser=True)
|