import argparse import glob import os.path import torch import torch.nn.functional as F import gradio as gr import numpy as np import onnxruntime as rt import tqdm import json from midi_synthesizer import synthesis import TMIDIX in_space = os.getenv("SYSTEM") == "spaces" #================================================================================================= def generate( start_tokens, seq_len, max_seq_len = 2048, temperature = 0.9, verbose=True, return_prime=False, ): out = torch.LongTensor([start_tokens]) st = len(start_tokens) if verbose: print("Generating sequence of max length:", seq_len) for s in range(seq_len): x = out[:, -max_seq_len:] torch_in = x.tolist()[0] logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1] filtered_logits = logits probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) if verbose: if s % 32 == 0: print(s, '/', seq_len) if return_prime: return out[:, :] else: return out[:, st:] #================================================================================================= def GenerateMIDI(params): melody_chords_f = generate([3087, 3073+1, 3075+1], 512) melody_chords_f = melody_chords_f.tolist()[0] print('=' * 70) print('Sample INTs', melody_chords_f[:12]) print('=' * 70) if len(melody_chords_f) != 0: song = melody_chords_f song_f = [] time = 0 dur = 0 vel = 0 pitch = 0 channel = 0 for ss in song: if ss > 0 and ss < 256: time += ss * 8 if ss >= 256 and ss < 1280: dur = ((ss-256) // 8) * 32 vel = (((ss-256) % 8)+1) * 15 if ss >= 1280 and ss < 2816: channel = (ss-1280) // 128 pitch = (ss-1280) % 128 song_f.append(['note', time, dur, channel, pitch, vel ]) detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f, output_signature = 'Allegro Music Transformer', output_file_name = 'Allegro-Music-Transformer-Music-Composition', track_name='Project Los Angeles', list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0], number_of_ticks_per_quarter=500) print('=' * 70) #================================================================================================= def cancel_run(mid_seq): if mid_seq is None: return None, None mid = tokenizer.detokenize(mid_seq) with open(f"output.mid", 'wb') as f: f.write(MIDI.score2midi(mid)) audio = synthesis(MIDI.score2opus(mid), soundfont_path) return "output.mid", (44100, audio), [create_msg("visualizer_end", None)] def load_javascript(dir="javascript"): scripts_list = glob.glob(f"*.js") javascript = "" for path in scripts_list: with open(path, "r", encoding="utf8") as jsfile: javascript += f"\n" template_response_ori = gr.routes.templates.TemplateResponse def template_response(*args, **kwargs): res = template_response_ori(*args, **kwargs) res.body = res.body.replace( b'', f'{javascript}'.encode("utf8")) res.init_headers() return res gr.routes.templates.TemplateResponse = template_response class JSMsgReceiver(gr.HTML): def __init__(self, **kwargs): super().__init__(elem_id="msg_receiver", visible=False, **kwargs) def postprocess(self, y): if y: y = f"

{json.dumps(y)}

" return super().postprocess(y) def get_block_name(self) -> str: return "html" #================================================================================================= if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--share", action="store_true", default=False, help="share gradio app") parser.add_argument("--port", type=int, default=7860, help="gradio server port") opt = parser.parse_args() session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=['CUDAExecutionProvider']) # load_javascript() app = gr.Blocks() with app: gr.Markdown("

Allegro Music Transformer

") gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n" "Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n" "Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n" "[Open In Colab]" "(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)" " for faster execution and endless generation" ) js_msg = JSMsgReceiver() run_btn = gr.Button("generate", variant="primary") stop_btn = gr.Button("stop and output") output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio") output_midi = gr.File(label="output midi", file_types=[".mid"]) run_event = run_btn.click(run, [output_midi_seq, output_midi, output_audio, js_msg]) stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio, js_msg], cancels=run_event, queue=False) app.queue(2).launch(server_port=opt.port, share=opt.share, inbrowser=True)