Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from keras.models import load_model
|
2 |
+
from keras.preprocessing import image
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import gradio as gr
|
6 |
+
loaded_model = load_model('diabetic_retinopathy_model.h5')
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
from tensorflow.keras.preprocessing import image
|
10 |
+
|
11 |
+
# Class mapping
|
12 |
+
class_mapping = {
|
13 |
+
0: 'No DR',
|
14 |
+
1: 'Mild',
|
15 |
+
2: 'Moderate',
|
16 |
+
3: 'Severe',
|
17 |
+
4: 'Proliferative DR'
|
18 |
+
}
|
19 |
+
|
20 |
+
# URL of the fixed example image to display
|
21 |
+
example_image_url = "1.jpg" # Replace with the actual URL
|
22 |
+
|
23 |
+
def predict_diabetic_retinopathy(test_image, loaded_model, height=512, width=512):
|
24 |
+
# Always return the example image
|
25 |
+
try:
|
26 |
+
if test_image is None:
|
27 |
+
return "No image uploaded. Please upload an image.", example_image_url
|
28 |
+
|
29 |
+
# Ensure the image is in the correct format
|
30 |
+
img = image.img_to_array(test_image)
|
31 |
+
|
32 |
+
# Resize the image while maintaining the aspect ratio
|
33 |
+
img = np.array(image.smart_resize(img, (height, width)))
|
34 |
+
|
35 |
+
img_array = np.expand_dims(img, axis=0)
|
36 |
+
img_array /= 255.0 # Normalize the image array
|
37 |
+
|
38 |
+
# Make predictions
|
39 |
+
predictions = loaded_model.predict(img_array)
|
40 |
+
|
41 |
+
# Convert predictions to the corresponding class
|
42 |
+
predicted_class = np.argmax(predictions)
|
43 |
+
|
44 |
+
# Return the predicted class and the example image URL
|
45 |
+
return f"**Predicted Diabetic Retinopathy Stage:** {class_mapping[predicted_class]}", example_image_url
|
46 |
+
|
47 |
+
except Exception as e:
|
48 |
+
return f"An error occurred: {str(e)}", example_image_url
|
49 |
+
|
50 |
+
# Create the Gradio interface with fixed example images
|
51 |
+
example_images = [
|
52 |
+
"No_DR.png",
|
53 |
+
"Mild.png",
|
54 |
+
"Moderate.png",
|
55 |
+
"Proliferate_DR.png"
|
56 |
+
]
|
57 |
+
|
58 |
+
iface = gr.Interface(
|
59 |
+
fn=lambda img: predict_diabetic_retinopathy(img, loaded_model),
|
60 |
+
inputs=gr.Image(type="numpy", label="Upload Retina Image"),
|
61 |
+
outputs=[gr.Markdown(label="Prediction Result"), gr.Image(value=example_image_url, label="Example Image")],
|
62 |
+
title="Diabetic Retinopathy Prediction",
|
63 |
+
description="Upload an image of the retina to predict the stage of diabetic retinopathy.",
|
64 |
+
theme="default",
|
65 |
+
examples=example_images
|
66 |
+
)
|
67 |
+
|
68 |
+
# Launch the interface
|
69 |
+
iface.launch()
|