Spaces:
Sleeping
Sleeping
Adding second layer to parse code to cells
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ from huggingface_hub import InferenceClient
|
|
8 |
import json
|
9 |
import re
|
10 |
import pandas as pd
|
|
|
|
|
11 |
|
12 |
"""
|
13 |
TODOs:
|
@@ -30,6 +32,8 @@ TODOs:
|
|
30 |
# Configuration
|
31 |
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
|
32 |
HEADERS = {"Accept": "application/json", "Content-Type": "application/json"}
|
|
|
|
|
33 |
client = Client(headers=HEADERS)
|
34 |
inference_client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
35 |
|
@@ -44,9 +48,12 @@ def get_compatible_libraries(dataset: str):
|
|
44 |
return resp.json()
|
45 |
|
46 |
|
47 |
-
def
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
50 |
The output should be a markdown code snippet formatted in the
|
51 |
following schema, including the leading and trailing "```json" and "```":
|
52 |
|
@@ -58,7 +65,13 @@ following schema, including the leading and trailing "```json" and "```":
|
|
58 |
}
|
59 |
]
|
60 |
```
|
61 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
prompt = """
|
64 |
You are an expert data analyst tasked with generating an exploratory data analysis (EDA) Jupyter notebook. The data is provided as a pandas DataFrame with the following structure:
|
@@ -83,13 +96,11 @@ It is mandatory that you use the following code to load the dataset, DO NOT try
|
|
83 |
|
84 |
{first_code}
|
85 |
|
86 |
-
{format_instructions}
|
87 |
"""
|
88 |
return prompt.format(
|
89 |
columns_info=columns_info,
|
90 |
sample_data=sample_data,
|
91 |
first_code=first_code,
|
92 |
-
format_instructions=format_instructions,
|
93 |
)
|
94 |
|
95 |
|
@@ -141,40 +152,40 @@ def get_first_rows_as_df(dataset: str, config: str, split: str, limit: int):
|
|
141 |
return features_dict, first_rows_df
|
142 |
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def content_from_output(output):
|
145 |
pattern = r"`json(.*?)`"
|
146 |
-
logging.info("--------> Getting data from output")
|
147 |
match = re.search(pattern, output, re.DOTALL)
|
148 |
if not match:
|
149 |
pattern = r"```(.*?)```"
|
150 |
-
logging.info("--------> Getting data from output, second try")
|
151 |
match = re.search(pattern, output, re.DOTALL)
|
152 |
if not match:
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
raise Exception("Unable to generate jupyter notebook.")
|
154 |
-
|
155 |
-
logging.info(extracted_text)
|
156 |
-
content = json.loads(extracted_text)
|
157 |
-
logging.info(content)
|
158 |
-
return content
|
159 |
-
|
160 |
|
161 |
-
def get_notebook_cells(prompt):
|
162 |
-
messages = [{"role": "user", "content": prompt}]
|
163 |
-
output = inference_client.chat_completion(messages=messages, max_tokens=2500)
|
164 |
-
output = output.choices[0].message.content
|
165 |
-
return content_from_output(output)
|
166 |
|
167 |
-
|
168 |
-
def generate_notebook(dataset_id):
|
169 |
try:
|
170 |
libraries = get_compatible_libraries(dataset_id)
|
171 |
except Exception as err:
|
172 |
gr.Error("Unable to retrieve dataset info from HF Hub.")
|
173 |
logging.error(f"Failed to fetch compatible libraries: {err}")
|
174 |
-
return
|
175 |
|
176 |
if not libraries:
|
177 |
-
gr.
|
178 |
logging.error(f"Dataset not compatible with pandas library")
|
179 |
return gr.File(visible=False), gr.Row.update(visible=False)
|
180 |
|
@@ -183,29 +194,103 @@ def generate_notebook(dataset_id):
|
|
183 |
None,
|
184 |
)
|
185 |
if not pandas_library:
|
186 |
-
gr.
|
187 |
-
|
188 |
-
return gr.File(visible=False), gr.Row.update(visible=False)
|
189 |
|
190 |
first_config_loading_code = pandas_library["loading_codes"][0]
|
191 |
first_code = first_config_loading_code["code"]
|
192 |
-
|
193 |
first_config = first_config_loading_code["config_name"]
|
194 |
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
|
195 |
logging.info(f"First config: {first_config} - first split: {first_split}")
|
196 |
first_file = f"hf://datasets/{dataset_id}/{first_config_loading_code['arguments']['splits'][first_split]}"
|
197 |
logging.info(f"First split file: {first_file}")
|
198 |
-
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
|
199 |
features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
|
200 |
prompt = generate_eda_prompt(features, df, first_code)
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
# Adding dataset viewer on the first part
|
204 |
-
commands.insert(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
commands.insert(0, {"cell_type": "markdown", "source": "# Dataset Viewer"})
|
206 |
notebook_name = f"{dataset_id.replace('/', '-')}.ipynb"
|
207 |
create_notebook_file(commands, notebook_name=notebook_name)
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
|
211 |
with gr.Blocks() as demo:
|
@@ -231,8 +316,24 @@ with gr.Blocks() as demo:
|
|
231 |
"""
|
232 |
return gr.HTML(value=html_code)
|
233 |
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
with gr.Row(visible=False) as auth_page:
|
237 |
with gr.Column():
|
238 |
gr.Markdown(
|
@@ -246,11 +347,7 @@ with gr.Blocks() as demo:
|
|
246 |
push_btn = gr.Button("Push notebook to hub", visible=False)
|
247 |
output_lbl = gr.HTML(value="", visible=False)
|
248 |
|
249 |
-
|
250 |
-
generate_notebook,
|
251 |
-
inputs=[dataset_name],
|
252 |
-
outputs=[download_link, auth_page],
|
253 |
-
)
|
254 |
|
255 |
def auth(token):
|
256 |
if not token:
|
@@ -271,7 +368,7 @@ with gr.Blocks() as demo:
|
|
271 |
|
272 |
push_btn.click(
|
273 |
push_notebook,
|
274 |
-
inputs=[
|
275 |
outputs=output_lbl,
|
276 |
)
|
277 |
|
|
|
8 |
import json
|
9 |
import re
|
10 |
import pandas as pd
|
11 |
+
from gradio.data_classes import FileData
|
12 |
+
|
13 |
|
14 |
"""
|
15 |
TODOs:
|
|
|
32 |
# Configuration
|
33 |
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
|
34 |
HEADERS = {"Accept": "application/json", "Content-Type": "application/json"}
|
35 |
+
GENERATED_TEXT = ""
|
36 |
+
|
37 |
client = Client(headers=HEADERS)
|
38 |
inference_client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
39 |
|
|
|
48 |
return resp.json()
|
49 |
|
50 |
|
51 |
+
def generate_mapping_prompt(code):
|
52 |
+
logging.info("Generating mapping prompt")
|
53 |
+
logging.info(code)
|
54 |
+
format_instructions = "Format the following python code to a list of cells to be used in a jupyter notebook:\n"
|
55 |
+
format_instructions += code
|
56 |
+
format_instructions += """
|
57 |
The output should be a markdown code snippet formatted in the
|
58 |
following schema, including the leading and trailing "```json" and "```":
|
59 |
|
|
|
65 |
}
|
66 |
]
|
67 |
```
|
68 |
+
"""
|
69 |
+
|
70 |
+
return format_instructions
|
71 |
+
|
72 |
+
|
73 |
+
def generate_eda_prompt(columns_info, df, first_code):
|
74 |
+
sample_data = df.head(5).to_dict(orient="records")
|
75 |
|
76 |
prompt = """
|
77 |
You are an expert data analyst tasked with generating an exploratory data analysis (EDA) Jupyter notebook. The data is provided as a pandas DataFrame with the following structure:
|
|
|
96 |
|
97 |
{first_code}
|
98 |
|
|
|
99 |
"""
|
100 |
return prompt.format(
|
101 |
columns_info=columns_info,
|
102 |
sample_data=sample_data,
|
103 |
first_code=first_code,
|
|
|
104 |
)
|
105 |
|
106 |
|
|
|
152 |
return features_dict, first_rows_df
|
153 |
|
154 |
|
155 |
+
def get_txt_from_output(output):
|
156 |
+
extracted_text = content_from_output(output)
|
157 |
+
content = json.loads(extracted_text)
|
158 |
+
logging.info(content)
|
159 |
+
return content
|
160 |
+
|
161 |
+
|
162 |
def content_from_output(output):
|
163 |
pattern = r"`json(.*?)`"
|
|
|
164 |
match = re.search(pattern, output, re.DOTALL)
|
165 |
if not match:
|
166 |
pattern = r"```(.*?)```"
|
|
|
167 |
match = re.search(pattern, output, re.DOTALL)
|
168 |
if not match:
|
169 |
+
try:
|
170 |
+
index = output.index("```json")
|
171 |
+
logging.info(f"Index: {index}")
|
172 |
+
return output[index + 7 :]
|
173 |
+
except:
|
174 |
+
pass
|
175 |
raise Exception("Unable to generate jupyter notebook.")
|
176 |
+
return match.group(1)
|
|
|
|
|
|
|
|
|
|
|
177 |
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
+
def generate_cells(dataset_id):
|
|
|
180 |
try:
|
181 |
libraries = get_compatible_libraries(dataset_id)
|
182 |
except Exception as err:
|
183 |
gr.Error("Unable to retrieve dataset info from HF Hub.")
|
184 |
logging.error(f"Failed to fetch compatible libraries: {err}")
|
185 |
+
return []
|
186 |
|
187 |
if not libraries:
|
188 |
+
gr.Error("Dataset not compatible with pandas library.")
|
189 |
logging.error(f"Dataset not compatible with pandas library")
|
190 |
return gr.File(visible=False), gr.Row.update(visible=False)
|
191 |
|
|
|
194 |
None,
|
195 |
)
|
196 |
if not pandas_library:
|
197 |
+
gr.Error("Dataset not compatible with pandas library.")
|
198 |
+
return []
|
|
|
199 |
|
200 |
first_config_loading_code = pandas_library["loading_codes"][0]
|
201 |
first_code = first_config_loading_code["code"]
|
|
|
202 |
first_config = first_config_loading_code["config_name"]
|
203 |
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
|
204 |
logging.info(f"First config: {first_config} - first split: {first_split}")
|
205 |
first_file = f"hf://datasets/{dataset_id}/{first_config_loading_code['arguments']['splits'][first_split]}"
|
206 |
logging.info(f"First split file: {first_file}")
|
|
|
207 |
features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
|
208 |
prompt = generate_eda_prompt(features, df, first_code)
|
209 |
+
messages = [gr.ChatMessage(role="user", content=prompt)]
|
210 |
+
yield messages + [gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")]
|
211 |
+
|
212 |
+
prompt_messages = [{"role": "user", "content": prompt}]
|
213 |
+
output = inference_client.chat_completion(
|
214 |
+
messages=prompt_messages, stream=True, max_tokens=2500
|
215 |
+
)
|
216 |
+
|
217 |
+
global GENERATED_TEXT
|
218 |
+
GENERATED_TEXT = ""
|
219 |
+
current_line = ""
|
220 |
+
for chunk in output:
|
221 |
+
current_line += chunk.choices[0].delta.content
|
222 |
+
if current_line.endswith("\n"):
|
223 |
+
GENERATED_TEXT += current_line
|
224 |
+
messages.append(gr.ChatMessage(role="assistant", content=current_line))
|
225 |
+
current_line = ""
|
226 |
+
yield messages
|
227 |
+
yield messages
|
228 |
+
|
229 |
+
logging.info("---> FOrmated prompt")
|
230 |
+
formatted_prompt = generate_mapping_prompt(GENERATED_TEXT)
|
231 |
+
logging.info(formatted_prompt)
|
232 |
+
prompt_messages = [{"role": "user", "content": formatted_prompt}]
|
233 |
+
yield messages + [gr.ChatMessage(role="assistant", content="⏳ _Generating notebook..._")]
|
234 |
+
|
235 |
+
output = inference_client.chat_completion(
|
236 |
+
messages=prompt_messages, stream=False, max_tokens=2500
|
237 |
+
)
|
238 |
+
cells_txt = output.choices[0].message.content
|
239 |
+
logging.info("---> Model output")
|
240 |
+
logging.info(cells_txt)
|
241 |
+
|
242 |
+
|
243 |
+
commands = get_txt_from_output(cells_txt)
|
244 |
+
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
|
245 |
# Adding dataset viewer on the first part
|
246 |
+
commands.insert(
|
247 |
+
0,
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"source": f'from IPython.display import HTML\n\ndisplay(HTML("{html_code}"))',
|
251 |
+
},
|
252 |
+
)
|
253 |
+
commands.insert(0, {"cell_type": "markdown", "source": "# Dataset Viewer"})
|
254 |
+
notebook_name = f"{dataset_id.replace('/', '-')}.ipynb"
|
255 |
+
create_notebook_file(commands, notebook_name=notebook_name)
|
256 |
+
messages.append(
|
257 |
+
gr.ChatMessage(role="user", content="Here is the generated notebook")
|
258 |
+
)
|
259 |
+
yield messages
|
260 |
+
messages.append(
|
261 |
+
gr.ChatMessage(
|
262 |
+
role="user",
|
263 |
+
content=FileData(path=notebook_name, mime_type="application/x-ipynb+json"),
|
264 |
+
)
|
265 |
+
)
|
266 |
+
yield messages
|
267 |
+
|
268 |
+
def write_notebook_file(dataset_id, history):
|
269 |
+
if not GENERATED_TEXT:
|
270 |
+
raise Exception("No generated notebook")
|
271 |
+
commands = get_txt_from_output(GENERATED_TEXT)
|
272 |
+
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
|
273 |
+
# Adding dataset viewer on the first part
|
274 |
+
commands.insert(
|
275 |
+
0,
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"source": f'from IPython.display import HTML\n\ndisplay(HTML("{html_code}"))',
|
279 |
+
},
|
280 |
+
)
|
281 |
commands.insert(0, {"cell_type": "markdown", "source": "# Dataset Viewer"})
|
282 |
notebook_name = f"{dataset_id.replace('/', '-')}.ipynb"
|
283 |
create_notebook_file(commands, notebook_name=notebook_name)
|
284 |
+
history.append(
|
285 |
+
gr.ChatMessage(role="user", content="Here is the generated notebook")
|
286 |
+
)
|
287 |
+
history.append(
|
288 |
+
gr.ChatMessage(
|
289 |
+
role="user",
|
290 |
+
content=FileData(path=notebook_name, mime_type="application/x-ipynb+json"),
|
291 |
+
)
|
292 |
+
)
|
293 |
+
return history
|
294 |
|
295 |
|
296 |
with gr.Blocks() as demo:
|
|
|
316 |
"""
|
317 |
return gr.HTML(value=html_code)
|
318 |
|
319 |
+
generate_cells_btn = gr.Button("Generate notebook")
|
320 |
+
|
321 |
+
chatbot = gr.Chatbot(
|
322 |
+
label="Results",
|
323 |
+
type="messages",
|
324 |
+
avatar_images=(
|
325 |
+
None,
|
326 |
+
None,
|
327 |
+
),
|
328 |
+
)
|
329 |
+
|
330 |
+
generate_cells_btn.click(
|
331 |
+
generate_cells,
|
332 |
+
inputs=[dataset_name],
|
333 |
+
outputs=[chatbot],
|
334 |
+
)
|
335 |
+
|
336 |
+
|
337 |
with gr.Row(visible=False) as auth_page:
|
338 |
with gr.Column():
|
339 |
gr.Markdown(
|
|
|
347 |
push_btn = gr.Button("Push notebook to hub", visible=False)
|
348 |
output_lbl = gr.HTML(value="", visible=False)
|
349 |
|
350 |
+
|
|
|
|
|
|
|
|
|
351 |
|
352 |
def auth(token):
|
353 |
if not token:
|
|
|
368 |
|
369 |
push_btn.click(
|
370 |
push_notebook,
|
371 |
+
inputs=[dataset_name, token_box],
|
372 |
outputs=output_lbl,
|
373 |
)
|
374 |
|