import gradio as gr
from gradio_huggingfacehub_search import HuggingfaceHubSearch
import nbformat as nbf
from huggingface_hub import HfApi
from httpx import Client
import logging
from huggingface_hub import InferenceClient
import json
import re
import pandas as pd
from gradio.data_classes import FileData
from utils.prompts import (
generate_mapping_prompt,
generate_user_prompt,
generate_rag_system_prompt,
generate_eda_system_prompt,
generate_embedding_system_prompt,
)
from dotenv import load_dotenv
import os
"""
TODOs:
- Need feedback on the output commands to validate if operations are appropiate to data types
- Refactor
- Make the notebook generation more dynamic, add loading components to do not freeze the UI
- Fix errors:
- When generating output
- When parsing output
- When pushing notebook
- Add target tasks to choose for the notebook:
- Exploratory data analysis
- Auto training
- RAG
- etc.
- Enable 'generate notebook' button only if dataset is available and supports library
- First get compatible-libraries and let user choose the library
"""
# Configuration
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
NOTEBOOKS_REPOSITORY = os.getenv("NOTEBOOKS_REPOSITORY")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
assert (
NOTEBOOKS_REPOSITORY is not None
), "You need to set NOTEBOOKS_REPOSITORY in your environment variables"
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
HEADERS = {"Accept": "application/json", "Content-Type": "application/json"}
client = Client(headers=HEADERS)
inference_client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
logging.basicConfig(level=logging.INFO)
def get_compatible_libraries(dataset: str):
try:
response = client.get(
f"{BASE_DATASETS_SERVER_URL}/compatible-libraries?dataset={dataset}"
)
response.raise_for_status()
return response.json()
except Exception as e:
logging.error(f"Error fetching compatible libraries: {e}")
raise
def create_notebook_file(cell_commands, notebook_name):
nb = nbf.v4.new_notebook()
nb["cells"] = [
nbf.v4.new_code_cell(
cmd["source"]
if isinstance(cmd["source"], str)
else "\n".join(cmd["source"])
)
if cmd["cell_type"] == "code"
else nbf.v4.new_markdown_cell(cmd["source"])
for cmd in cell_commands
]
with open(notebook_name, "w") as f:
nbf.write(nb, f)
logging.info(f"Notebook {notebook_name} created successfully")
def get_first_rows_as_df(dataset: str, config: str, split: str, limit: int):
try:
resp = client.get(
f"{BASE_DATASETS_SERVER_URL}/first-rows?dataset={dataset}&config={config}&split={split}"
)
resp.raise_for_status()
content = resp.json()
rows = content["rows"]
rows = [row["row"] for row in rows]
first_rows_df = pd.DataFrame.from_dict(rows).sample(frac=1).head(limit)
features = content["features"]
features_dict = {feature["name"]: feature["type"] for feature in features}
return features_dict, first_rows_df
except Exception as e:
logging.error(f"Error fetching first rows: {e}")
raise
def get_txt_from_output(output):
extracted_text = extract_content_from_output(output)
logging.info("--> Extracted text between json block")
logging.info(extracted_text)
content = json.loads(extracted_text)
return content
def extract_content_from_output(output):
patterns = [r"`json(.*?)`", r"```(.*?)```"]
for pattern in patterns:
match = re.search(pattern, output, re.DOTALL)
if match:
return match.group(1)
try:
index = output.index("```json")
logging.info(f"Index: {index}")
return output[index + 7 :]
except ValueError:
logging.error("Unable to generate Jupyter notebook.")
raise
def content_from_output(output):
pattern = r"`json(.*?)`"
match = re.search(pattern, output, re.DOTALL)
if not match:
pattern = r"```(.*?)```"
match = re.search(pattern, output, re.DOTALL)
if not match:
try:
index = output.index("```json")
logging.info(f"Index: {index}")
return output[index + 7 :]
except:
pass
raise Exception("Unable to generate jupyter notebook.")
return match.group(1)
def generate_eda_cells(dataset_id):
for messages in generate_cells(dataset_id, generate_eda_system_prompt, "eda"):
yield messages, None # Keep button hidden
yield (
messages,
f"{dataset_id.replace('/', '-')}-eda.ipynb",
)
def generate_rag_cells(dataset_id):
for messages in generate_cells(dataset_id, generate_rag_system_prompt, "rag"):
yield messages, None # Keep button hidden
yield (
messages,
f"{dataset_id.replace('/', '-')}-rag.ipynb",
)
def generate_embedding_cells(dataset_id):
for messages in generate_cells(
dataset_id, generate_embedding_system_prompt, "embedding"
):
yield messages, None # Keep button hidden
yield (
messages,
f"{dataset_id.replace('/', '-')}-embedding.ipynb",
)
def _push_to_hub(
history,
dataset_id,
notebook_file,
):
logging.info(f"Pushing notebook to hub: {dataset_id} on file {notebook_file}")
notebook_name = notebook_file.split("/")[-1]
api = HfApi(token=HF_TOKEN)
try:
logging.info(f"About to push {notebook_file} - {dataset_id}")
api.upload_file(
path_or_fileobj=notebook_file,
path_in_repo=notebook_name,
repo_id=NOTEBOOKS_REPOSITORY,
repo_type="dataset",
)
link = f"https://huggingface.co/datasets/{NOTEBOOKS_REPOSITORY}/blob/main/{notebook_name}"
logging.info(f"Notebook pushed to hub: {link}")
yield history + [
gr.ChatMessage(
role="user",
content=f"[{notebook_name}]({link})",
)
]
except Exception as e:
logging.info("Failed to push notebook", e)
yield history + [gr.ChatMessage(role="assistant", content=e)]
def generate_cells(dataset_id, prompt_fn, notebook_type="eda"):
try:
libraries = get_compatible_libraries(dataset_id)
except Exception as err:
gr.Error("Unable to retrieve dataset info from HF Hub.")
logging.error(f"Failed to fetch compatible libraries: {err}")
return []
if not libraries:
gr.Error("Dataset not compatible with pandas library.")
logging.error(f"Dataset not compatible with pandas library")
return gr.File(visible=False), gr.Row.update(visible=False)
pandas_library = next(
(lib for lib in libraries.get("libraries", []) if lib["library"] == "pandas"),
None,
)
if not pandas_library:
gr.Error("Dataset not compatible with pandas library.")
return []
first_config_loading_code = pandas_library["loading_codes"][0]
first_code = first_config_loading_code["code"]
first_config = first_config_loading_code["config_name"]
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
prompt = generate_user_prompt(
features, df.head(5).to_dict(orient="records"), first_code
)
messages = [gr.ChatMessage(role="user", content=prompt)]
yield messages + [gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")]
prompt_messages = [
{"role": "system", "content": prompt_fn()},
{"role": "user", "content": prompt},
]
output = inference_client.chat_completion(
messages=prompt_messages,
stream=True,
max_tokens=2500,
top_p=0.8,
seed=42,
)
generated_text = ""
current_line = ""
for chunk in output:
current_line += chunk.choices[0].delta.content
if current_line.endswith("\n"):
generated_text += current_line
messages.append(gr.ChatMessage(role="assistant", content=current_line))
current_line = ""
yield messages
yield messages
logging.info("---> Notebook markdown code output")
logging.info(generated_text)
retries = 0
retry_limit = 3
while retries < retry_limit:
try:
formatted_prompt = generate_mapping_prompt(generated_text)
prompt_messages = [{"role": "user", "content": formatted_prompt}]
yield messages + [
gr.ChatMessage(role="assistant", content="⏳ _Generating notebook..._")
]
output = inference_client.chat_completion(
messages=prompt_messages,
stream=False,
max_tokens=2500,
top_p=0.8,
seed=42,
)
cells_txt = output.choices[0].message.content
logging.info(f"---> Mapping to json output attempt {retries}")
logging.info(cells_txt)
commands = get_txt_from_output(cells_txt)
break
except Exception as e:
logging.warn("Error when parsing output, retrying ..")
retries += 1
if retries == retry_limit:
logging.error(f"Unable to parse output after {retry_limit} retries")
gr.Error("Unable to generate notebook. Try again please")
raise e
html_code = f""
commands.insert(
0,
{
"cell_type": "code",
"source": f'from IPython.display import HTML\n\ndisplay(HTML("{html_code}"))',
},
)
commands.insert(0, {"cell_type": "markdown", "source": "# Dataset Viewer"})
notebook_name = f"{dataset_id.replace('/', '-')}-{notebook_type}.ipynb"
create_notebook_file(commands, notebook_name=notebook_name)
messages.append(
gr.ChatMessage(role="user", content="See the generated notebook on the Hub")
)
yield messages
yield from _push_to_hub(messages, dataset_id, notebook_name)
def coming_soon_message():
return gr.Info("Coming soon")
def handle_example(example, button_action):
return button_action(example)
with gr.Blocks(fill_width=True) as demo:
gr.Markdown("# 🤖 Dataset notebook creator 🕵️")
with gr.Row(equal_height=True):
with gr.Column(scale=2):
text_input = gr.Textbox(label="Suggested notebook type", visible=False)
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
value="",
)
dataset_samples = gr.Examples(
examples=[
[
"infinite-dataset-hub/WorldPopCounts",
"Try this dataset for Exploratory Data Analysis",
],
[
"infinite-dataset-hub/GlobaleCuisineRecipes",
"Try this dataset for Embeddings generation",
],
[
"infinite-dataset-hub/GlobalBestSellersSummaries",
"Try this dataset for RAG generation",
],
],
inputs=[dataset_name, text_input],
cache_examples=False,
)
@gr.render(inputs=dataset_name)
def embed(name):
if not name:
return gr.Markdown("### No dataset provided")
html_code = f"""
"""
return gr.HTML(value=html_code)
with gr.Row():
generate_eda_btn = gr.Button("Exploratory Data Analysis")
generate_embedding_btn = gr.Button("Embeddings")
generate_rag_btn = gr.Button("RAG")
generate_training_btn = gr.Button(
"Training - Coming soon", interactive=False
)
with gr.Column(scale=1):
with gr.Row():
chatbot = gr.Chatbot(
label="Results",
type="messages",
height=650,
avatar_images=(
None,
None,
),
)
notebook_file = gr.File(visible=False)
generate_eda_btn.click(
generate_eda_cells,
inputs=[dataset_name],
outputs=[chatbot, notebook_file],
)
generate_embedding_btn.click(
generate_embedding_cells,
inputs=[dataset_name],
outputs=[chatbot, notebook_file],
)
generate_rag_btn.click(
generate_rag_cells,
inputs=[dataset_name],
outputs=[chatbot, notebook_file],
)
generate_training_btn.click(coming_soon_message, inputs=[], outputs=[])
demo.launch()