Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import duckdb | |
import gradio as gr | |
from dotenv import load_dotenv | |
from httpx import Client | |
from huggingface_hub import HfApi | |
from huggingface_hub.utils import logging | |
from llama_cpp import Llama | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables" | |
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co" | |
API_URL = "https://m82etjwvhoptr3t5.us-east-1.aws.endpoints.huggingface.cloud" | |
headers = { | |
"Accept" : "application/json", | |
"Authorization": f"Bearer {HF_TOKEN}", | |
"Content-Type": "application/json" | |
} | |
logger = logging.get_logger(__name__) | |
client = Client(headers=headers) | |
api = HfApi(token=HF_TOKEN) | |
llama = Llama( | |
model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", | |
n_ctx=2048, | |
) | |
def get_first_parquet(dataset: str): | |
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}") | |
return resp.json()["parquet_files"][0] | |
def query_remote_model(text): | |
payload = { | |
"inputs": text, | |
"parameters": {} | |
} | |
response = client.post(API_URL, headers=headers, json=payload) | |
pred = response.json() | |
return pred[0]["generated_text"] | |
def query_local_model(text): | |
pred = llama(text, temperature=0.1, max_tokens=500) | |
return pred["choices"][0]["text"] | |
def text2sql(dataset_name, query_input): | |
print(f"start text2sql for {dataset_name}") | |
try: | |
first_parquet = get_first_parquet(dataset_name) | |
except Exception as e: | |
return f"❌ Dataset does not exist or is not supported {e}" | |
first_parquet_url = first_parquet["url"] | |
print(first_parquet_url) | |
con = duckdb.connect() | |
con.execute("INSTALL 'httpfs'; LOAD httpfs;") | |
con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;") | |
result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df() | |
con.close() | |
ddl_create = result.iloc[0,0] | |
text = f"""### Instruction: | |
Your task is to generate valid duckdb SQL to answer the following question. | |
### Input: | |
Here is the database schema that the SQL query will run on: | |
{ddl_create} | |
### Question: | |
{query_input} | |
### Response (use duckdb shorthand if possible): | |
""" | |
print(text) | |
# sql_output = query_remote_model(text) | |
sql_output = query_local_model(text) | |
return sql_output | |
with gr.Blocks() as demo: | |
gr.Markdown("# Talk to your dataset") | |
gr.Markdown("This space shows how to talk to your datasets: Get a brief description, create SQL queries, and get results.") | |
gr.Markdown("Generate SQL queries'") | |
dataset_name = gr.Textbox("sksayril/medicine-info", label="Dataset Name") | |
query_input = gr.Textbox("How many rows there are?", label="Ask something about your data") | |
btn = gr.Button("Generate SQL") | |
query_output = gr.Textbox(label="Output SQL", interactive= False) | |
btn.click(text2sql, inputs=[dataset_name, query_input], outputs=query_output) | |
demo.launch() | |