Spaces:
Running
Running
File size: 38,307 Bytes
6ccea25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 |
import os
import cv2
import numpy as np
import psutil
from roop.ProcessOptions import ProcessOptions
from roop.face_util import get_first_face, get_all_faces, rotate_anticlockwise, rotate_clockwise, clamp_cut_values
from roop.utilities import compute_cosine_distance, get_device, str_to_class, shuffle_array
import roop.vr_util as vr
from typing import Any, List, Callable
from roop.typing import Frame, Face
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Thread, Lock
from queue import Queue
from tqdm import tqdm
from roop.ffmpeg_writer import FFMPEG_VideoWriter
from roop.StreamWriter import StreamWriter
import roop.globals
# Poor man's enum to be able to compare to int
class eNoFaceAction():
USE_ORIGINAL_FRAME = 0
RETRY_ROTATED = 1
SKIP_FRAME = 2
SKIP_FRAME_IF_DISSIMILAR = 3,
USE_LAST_SWAPPED = 4
def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
queue: Queue[str] = Queue()
for frame_path in temp_frame_paths:
queue.put(frame_path)
return queue
def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
queues = []
for _ in range(queue_per_future):
if not queue.empty():
queues.append(queue.get())
return queues
class ProcessMgr():
input_face_datas = []
target_face_datas = []
imagemask = None
processors = []
options : ProcessOptions = None
num_threads = 1
current_index = 0
processing_threads = 1
buffer_wait_time = 0.1
lock = Lock()
frames_queue = None
processed_queue = None
videowriter= None
streamwriter = None
progress_gradio = None
total_frames = 0
num_frames_no_face = 0
last_swapped_frame = None
output_to_file = None
output_to_cam = None
plugins = {
'faceswap' : 'FaceSwapInsightFace',
'mask_clip2seg' : 'Mask_Clip2Seg',
'mask_xseg' : 'Mask_XSeg',
'codeformer' : 'Enhance_CodeFormer',
'gfpgan' : 'Enhance_GFPGAN',
'dmdnet' : 'Enhance_DMDNet',
'gpen' : 'Enhance_GPEN',
'restoreformer++' : 'Enhance_RestoreFormerPPlus',
'colorizer' : 'Frame_Colorizer',
'filter_generic' : 'Frame_Filter',
'removebg' : 'Frame_Masking',
'upscale' : 'Frame_Upscale'
}
def __init__(self, progress):
if progress is not None:
self.progress_gradio = progress
def reuseOldProcessor(self, name:str):
for p in self.processors:
if p.processorname == name:
return p
return None
def initialize(self, input_faces, target_faces, options):
self.input_face_datas = input_faces
self.target_face_datas = target_faces
self.num_frames_no_face = 0
self.last_swapped_frame = None
self.options = options
devicename = get_device()
roop.globals.g_desired_face_analysis=["landmark_3d_68", "landmark_2d_106","detection","recognition"]
if options.swap_mode == "all_female" or options.swap_mode == "all_male":
roop.globals.g_desired_face_analysis.append("genderage")
elif options.swap_mode == "all_random":
# don't modify original list
self.input_face_datas = input_faces.copy()
shuffle_array(self.input_face_datas)
for p in self.processors:
newp = next((x for x in options.processors.keys() if x == p.processorname), None)
if newp is None:
p.Release()
del p
newprocessors = []
for key, extoption in options.processors.items():
p = self.reuseOldProcessor(key)
if p is None:
classname = self.plugins[key]
module = 'roop.processors.' + classname
p = str_to_class(module, classname)
if p is not None:
extoption.update({"devicename": devicename})
if p.type == "swap":
if self.options.swap_modelname == "InSwapper 128":
extoption.update({"modelname": "inswapper_128.onnx"})
elif self.options.swap_modelname == "ReSwapper 128":
extoption.update({"modelname": "reswapper_128.onnx"})
elif self.options.swap_modelname == "ReSwapper 256":
extoption.update({"modelname": "reswapper_256.onnx"})
p.Initialize(extoption)
newprocessors.append(p)
else:
print(f"Not using {module}")
self.processors = newprocessors
if isinstance(self.options.imagemask, dict) and self.options.imagemask.get("layers") and len(self.options.imagemask["layers"]) > 0:
self.options.imagemask = self.options.imagemask.get("layers")[0]
# Get rid of alpha
self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_RGBA2GRAY)
if np.any(self.options.imagemask):
mo = self.input_face_datas[0].faces[0].mask_offsets
self.options.imagemask = self.blur_area(self.options.imagemask, mo[4], mo[5])
self.options.imagemask = self.options.imagemask.astype(np.float32) / 255
self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_GRAY2RGB)
else:
self.options.imagemask = None
self.options.frame_processing = False
for p in self.processors:
if p.type.startswith("frame_"):
self.options.frame_processing = True
def run_batch(self, source_files, target_files, threads:int = 1):
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
self.total_frames = len(source_files)
self.num_threads = threads
with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
with ThreadPoolExecutor(max_workers=threads) as executor:
futures = []
queue = create_queue(source_files)
queue_per_future = max(len(source_files) // threads, 1)
while not queue.empty():
future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
futures.append(future)
for future in as_completed(futures):
future.result()
def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
for f in current_files:
if not roop.globals.processing:
return
# Decode the byte array into an OpenCV image
temp_frame = cv2.imdecode(np.fromfile(f, dtype=np.uint8), cv2.IMREAD_COLOR)
if temp_frame is not None:
if self.options.frame_processing:
for p in self.processors:
frame = p.Run(temp_frame)
resimg = frame
else:
resimg = self.process_frame(temp_frame)
if resimg is not None:
i = source_files.index(f)
# Also let numpy write the file to support utf-8/16 filenames
cv2.imencode(f'.{roop.globals.CFG.output_image_format}',resimg)[1].tofile(target_files[i])
if update:
update()
def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
num_frame = 0
total_num = frame_end - frame_start
if frame_start > 0:
cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)
while True and roop.globals.processing:
ret, frame = cap.read()
if not ret:
break
self.frames_queue[num_frame % num_threads].put(frame, block=True)
num_frame += 1
if num_frame == total_num:
break
for i in range(num_threads):
self.frames_queue[i].put(None)
def process_videoframes(self, threadindex, progress) -> None:
while True:
frame = self.frames_queue[threadindex].get()
if frame is None:
self.processing_threads -= 1
self.processed_queue[threadindex].put((False, None))
return
else:
if self.options.frame_processing:
for p in self.processors:
frame = p.Run(frame)
resimg = frame
else:
resimg = self.process_frame(frame)
self.processed_queue[threadindex].put((True, resimg))
del frame
progress()
def write_frames_thread(self):
nextindex = 0
num_producers = self.num_threads
while True:
process, frame = self.processed_queue[nextindex % self.num_threads].get()
nextindex += 1
if frame is not None:
if self.output_to_file:
self.videowriter.write_frame(frame)
if self.output_to_cam:
self.streamwriter.WriteToStream(frame)
del frame
elif process == False:
num_producers -= 1
if num_producers < 1:
return
def run_batch_inmem(self, output_method, source_video, target_video, frame_start, frame_end, fps, threads:int = 1):
if len(self.processors) < 1:
print("No processor defined!")
return
cap = cv2.VideoCapture(source_video)
# frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_count = (frame_end - frame_start) + 1
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
processed_resolution = None
for p in self.processors:
if hasattr(p, 'getProcessedResolution'):
processed_resolution = p.getProcessedResolution(width, height)
print(f"Processed resolution: {processed_resolution}")
if processed_resolution is not None:
width = processed_resolution[0]
height = processed_resolution[1]
self.total_frames = frame_count
self.num_threads = threads
self.processing_threads = self.num_threads
self.frames_queue = []
self.processed_queue = []
for _ in range(threads):
self.frames_queue.append(Queue(1))
self.processed_queue.append(Queue(1))
self.output_to_file = output_method != "Virtual Camera"
self.output_to_cam = output_method == "Virtual Camera" or output_method == "Both"
if self.output_to_file:
self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)
if self.output_to_cam:
self.streamwriter = StreamWriter((width, height), int(fps))
readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
readthread.start()
writethread = Thread(target=self.write_frames_thread)
writethread.start()
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
futures = []
for threadindex in range(threads):
future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
futures.append(future)
for future in as_completed(futures):
future.result()
# wait for the task to complete
readthread.join()
writethread.join()
cap.release()
if self.output_to_file:
self.videowriter.close()
if self.output_to_cam:
self.streamwriter.Close()
self.frames_queue.clear()
self.processed_queue.clear()
def update_progress(self, progress: Any = None) -> None:
process = psutil.Process(os.getpid())
memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
progress.set_postfix({
'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
'execution_threads': self.num_threads
})
progress.update(1)
if self.progress_gradio is not None:
self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')
def process_frame(self, frame:Frame):
if len(self.input_face_datas) < 1 and not self.options.show_face_masking:
return frame
temp_frame = frame.copy()
num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
if num_swapped > 0:
if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME_IF_DISSIMILAR:
if len(self.input_face_datas) > num_swapped:
return None
self.num_frames_no_face = 0
self.last_swapped_frame = temp_frame.copy()
return temp_frame
if roop.globals.no_face_action == eNoFaceAction.USE_LAST_SWAPPED:
if self.last_swapped_frame is not None and self.num_frames_no_face < self.options.max_num_reuse_frame:
self.num_frames_no_face += 1
return self.last_swapped_frame.copy()
return frame
elif roop.globals.no_face_action == eNoFaceAction.USE_ORIGINAL_FRAME:
return frame
if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME:
#This only works with in-mem processing, as it simply skips the frame.
#For 'extract frames' it simply leaves the unprocessed frame unprocessed and it gets used in the final output by ffmpeg.
#If we could delete that frame here, that'd work but that might cause ffmpeg to fail unless the frames are renamed, and I don't think we have the info on what frame it actually is?????
#alternatively, it could mark all the necessary frames for deletion, delete them at the end, then rename the remaining frames that might work?
return None
else:
return self.retry_rotated(frame)
def retry_rotated(self, frame):
copyframe = frame.copy()
copyframe = rotate_clockwise(copyframe)
temp_frame = copyframe.copy()
num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
if num_swapped > 0:
return rotate_anticlockwise(temp_frame)
copyframe = frame.copy()
copyframe = rotate_anticlockwise(copyframe)
temp_frame = copyframe.copy()
num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
if num_swapped > 0:
return rotate_clockwise(temp_frame)
del copyframe
return frame
def swap_faces(self, frame, temp_frame):
num_faces_found = 0
if self.options.swap_mode == "first":
face = get_first_face(frame)
if face is None:
return num_faces_found, frame
num_faces_found += 1
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
del face
else:
faces = get_all_faces(frame)
if faces is None:
return num_faces_found, frame
if self.options.swap_mode == "all":
for face in faces:
num_faces_found += 1
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
elif self.options.swap_mode == "all_input" or self.options.swap_mode == "all_random":
for i,face in enumerate(faces):
num_faces_found += 1
if i < len(self.input_face_datas):
temp_frame = self.process_face(i, face, temp_frame)
else:
break
elif self.options.swap_mode == "selected":
num_targetfaces = len(self.target_face_datas)
use_index = num_targetfaces == 1
for i,tf in enumerate(self.target_face_datas):
for face in faces:
if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
if i < len(self.input_face_datas):
if use_index:
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
else:
temp_frame = self.process_face(i, face, temp_frame)
num_faces_found += 1
if not roop.globals.vr_mode and num_faces_found == num_targetfaces:
break
elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
gender = 'F' if self.options.swap_mode == "all_female" else 'M'
for face in faces:
if face.sex == gender:
num_faces_found += 1
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
# might be slower but way more clean to release everything here
for face in faces:
del face
faces.clear()
if roop.globals.vr_mode and num_faces_found % 2 > 0:
# stereo image, there has to be an even number of faces
num_faces_found = 0
return num_faces_found, frame
if num_faces_found == 0:
return num_faces_found, frame
#maskprocessor = next((x for x in self.processors if x.type == 'mask'), None)
if self.options.imagemask is not None and self.options.imagemask.shape == frame.shape:
temp_frame = self.simple_blend_with_mask(temp_frame, frame, self.options.imagemask)
return num_faces_found, temp_frame
def rotation_action(self, original_face:Face, frame:Frame):
(height, width) = frame.shape[:2]
bounding_box_width = original_face.bbox[2] - original_face.bbox[0]
bounding_box_height = original_face.bbox[3] - original_face.bbox[1]
horizontal_face = bounding_box_width > bounding_box_height
center_x = width // 2.0
start_x = original_face.bbox[0]
end_x = original_face.bbox[2]
bbox_center_x = start_x + (bounding_box_width // 2.0)
# need to leverage the array of landmarks as decribed here:
# https://github.com/deepinsight/insightface/tree/master/alignment/coordinate_reg
# basically, we should be able to check for the relative position of eyes and nose
# then use that to determine which way the face is actually facing when in a horizontal position
# and use that to determine the correct rotation_action
forehead_x = original_face.landmark_2d_106[72][0]
chin_x = original_face.landmark_2d_106[0][0]
if horizontal_face:
if chin_x < forehead_x:
# this is someone lying down with their face like this (:
return "rotate_anticlockwise"
elif forehead_x < chin_x:
# this is someone lying down with their face like this :)
return "rotate_clockwise"
if bbox_center_x >= center_x:
# this is someone lying down with their face in the right hand side of the frame
return "rotate_anticlockwise"
if bbox_center_x < center_x:
# this is someone lying down with their face in the left hand side of the frame
return "rotate_clockwise"
return None
def auto_rotate_frame(self, original_face, frame:Frame):
target_face = original_face
original_frame = frame
rotation_action = self.rotation_action(original_face, frame)
if rotation_action == "rotate_anticlockwise":
#face is horizontal, rotating frame anti-clockwise and getting face bounding box from rotated frame
frame = rotate_anticlockwise(frame)
elif rotation_action == "rotate_clockwise":
#face is horizontal, rotating frame clockwise and getting face bounding box from rotated frame
frame = rotate_clockwise(frame)
return target_face, frame, rotation_action
def auto_unrotate_frame(self, frame:Frame, rotation_action):
if rotation_action == "rotate_anticlockwise":
return rotate_clockwise(frame)
elif rotation_action == "rotate_clockwise":
return rotate_anticlockwise(frame)
return frame
def process_face(self,face_index, target_face:Face, frame:Frame):
from roop.face_util import align_crop
enhanced_frame = None
if(len(self.input_face_datas) > 0):
inputface = self.input_face_datas[face_index].faces[0]
else:
inputface = None
rotation_action = None
if roop.globals.autorotate_faces:
# check for sideways rotation of face
rotation_action = self.rotation_action(target_face, frame)
if rotation_action is not None:
(startX, startY, endX, endY) = target_face["bbox"].astype("int")
width = endX - startX
height = endY - startY
offs = int(max(width,height) * 0.25)
rotcutframe,startX, startY, endX, endY = self.cutout(frame, startX - offs, startY - offs, endX + offs, endY + offs)
if rotation_action == "rotate_anticlockwise":
rotcutframe = rotate_anticlockwise(rotcutframe)
elif rotation_action == "rotate_clockwise":
rotcutframe = rotate_clockwise(rotcutframe)
# rotate image and re-detect face to correct wonky landmarks
rotface = get_first_face(rotcutframe)
if rotface is None:
rotation_action = None
else:
saved_frame = frame.copy()
frame = rotcutframe
target_face = rotface
# if roop.globals.vr_mode:
# bbox = target_face.bbox
# [orig_width, orig_height, _] = frame.shape
# # Convert bounding box to ints
# x1, y1, x2, y2 = map(int, bbox)
# # Determine the center of the bounding box
# x_center = (x1 + x2) / 2
# y_center = (y1 + y2) / 2
# # Normalize coordinates to range [-1, 1]
# x_center_normalized = x_center / (orig_width / 2) - 1
# y_center_normalized = y_center / (orig_width / 2) - 1
# # Convert normalized coordinates to spherical (theta, phi)
# theta = x_center_normalized * 180 # Theta ranges from -180 to 180 degrees
# phi = -y_center_normalized * 90 # Phi ranges from -90 to 90 degrees
# img = vr.GetPerspective(frame, 90, theta, phi, 1280, 1280) # Generate perspective image
""" Code ported/adapted from Facefusion which borrowed the idea from Rope:
Kind of subsampling the cutout and aligned face image and faceswapping slices of it up to
the desired output resolution. This works around the current resolution limitations without using enhancers.
"""
model_output_size = self.options.swap_output_size
subsample_size = max(self.options.subsample_size, model_output_size)
subsample_total = subsample_size // model_output_size
aligned_img, M = align_crop(frame, target_face.kps, subsample_size)
fake_frame = aligned_img
target_face.matrix = M
for p in self.processors:
if p.type == 'swap':
swap_result_frames = []
subsample_frames = self.implode_pixel_boost(aligned_img, model_output_size, subsample_total)
for sliced_frame in subsample_frames:
for _ in range(0,self.options.num_swap_steps):
sliced_frame = self.prepare_crop_frame(sliced_frame)
sliced_frame = p.Run(inputface, target_face, sliced_frame)
sliced_frame = self.normalize_swap_frame(sliced_frame)
swap_result_frames.append(sliced_frame)
fake_frame = self.explode_pixel_boost(swap_result_frames, model_output_size, subsample_total, subsample_size)
fake_frame = fake_frame.astype(np.uint8)
scale_factor = 0.0
elif p.type == 'mask':
fake_frame = self.process_mask(p, aligned_img, fake_frame)
else:
enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)
upscale = 512
orig_width = fake_frame.shape[1]
if orig_width != upscale:
fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
mask_offsets = (0,0,0,0,1,20) if inputface is None else inputface.mask_offsets
if enhanced_frame is None:
scale_factor = int(upscale / orig_width)
result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
else:
result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)
# Restore mouth before unrotating
if self.options.restore_original_mouth:
mouth_cutout, mouth_bb = self.create_mouth_mask(target_face, frame)
result = self.apply_mouth_area(result, mouth_cutout, mouth_bb)
if rotation_action is not None:
fake_frame = self.auto_unrotate_frame(result, rotation_action)
result = self.paste_simple(fake_frame, saved_frame, startX, startY)
return result
def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
if start_x < 0:
start_x = 0
if start_y < 0:
start_y = 0
if end_x > frame.shape[1]:
end_x = frame.shape[1]
if end_y > frame.shape[0]:
end_y = frame.shape[0]
return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y
def paste_simple(self, src:Frame, dest:Frame, start_x, start_y):
end_x = start_x + src.shape[1]
end_y = start_y + src.shape[0]
start_x, end_x, start_y, end_y = clamp_cut_values(start_x, end_x, start_y, end_y, dest)
dest[start_y:end_y, start_x:end_x] = src
return dest
def simple_blend_with_mask(self, image1, image2, mask):
# Blend the images
blended_image = image1.astype(np.float32) * (1.0 - mask) + image2.astype(np.float32) * mask
return blended_image.astype(np.uint8)
def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
M_scale = M * scale_factor
IM = cv2.invertAffineTransform(M_scale)
face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
# Generate white square sized as a upsk_face
img_matte = np.zeros((upsk_face.shape[0],upsk_face.shape[1]), dtype=np.uint8)
w = img_matte.shape[1]
h = img_matte.shape[0]
top = int(mask_offsets[0] * h)
bottom = int(h - (mask_offsets[1] * h))
left = int(mask_offsets[2] * w)
right = int(w - (mask_offsets[3] * w))
img_matte[top:bottom,left:right] = 255
# Transform white square back to target_img
img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0)
##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0
img_matte = self.blur_area(img_matte, mask_offsets[4], mask_offsets[5])
#Normalize images to float values and reshape
img_matte = img_matte.astype(np.float32)/255
face_matte = face_matte.astype(np.float32)/255
img_matte = np.minimum(face_matte, img_matte)
if self.options.show_face_area_overlay:
# Additional steps for green overlay
green_overlay = np.zeros_like(target_img)
green_color = [0, 255, 0] # RGB for green
for i in range(3): # Apply green color where img_matte is not zero
green_overlay[:, :, i] = np.where(img_matte > 0, green_color[i], 0) ##Transform upcaled face back to target_img
img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1])
paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
if upsk_face is not fake_face:
fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)
# Re-assemble image
paste_face = img_matte * paste_face
paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
if self.options.show_face_area_overlay:
# Overlay the green overlay on the final image
paste_face = cv2.addWeighted(paste_face.astype(np.uint8), 1 - 0.5, green_overlay, 0.5, 0)
return paste_face.astype(np.uint8)
def blur_area(self, img_matte, num_erosion_iterations, blur_amount):
# Detect the affine transformed white area
mask_h_inds, mask_w_inds = np.where(img_matte==255)
# Calculate the size (and diagonal size) of transformed white area width and height boundaries
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
mask_size = int(np.sqrt(mask_h*mask_w))
# Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
# k = max(mask_size//12, 8)
k = max(mask_size//(blur_amount // 2) , blur_amount // 2)
kernel = np.ones((k,k),np.uint8)
img_matte = cv2.erode(img_matte,kernel,iterations = num_erosion_iterations)
#Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
# k = max(mask_size//24, 4)
k = max(mask_size//blur_amount, blur_amount//5)
kernel_size = (k, k)
blur_size = tuple(2*i+1 for i in kernel_size)
return cv2.GaussianBlur(img_matte, blur_size, 0)
def prepare_crop_frame(self, swap_frame):
model_type = 'inswapper'
model_mean = [0.0, 0.0, 0.0]
model_standard_deviation = [1.0, 1.0, 1.0]
if model_type == 'ghost':
swap_frame = swap_frame[:, :, ::-1] / 127.5 - 1
else:
swap_frame = swap_frame[:, :, ::-1] / 255.0
swap_frame = (swap_frame - model_mean) / model_standard_deviation
swap_frame = swap_frame.transpose(2, 0, 1)
swap_frame = np.expand_dims(swap_frame, axis = 0).astype(np.float32)
return swap_frame
def normalize_swap_frame(self, swap_frame):
model_type = 'inswapper'
swap_frame = swap_frame.transpose(1, 2, 0)
if model_type == 'ghost':
swap_frame = (swap_frame * 127.5 + 127.5).round()
else:
swap_frame = (swap_frame * 255.0).round()
swap_frame = swap_frame[:, :, ::-1]
return swap_frame
def implode_pixel_boost(self, aligned_face_frame, model_size, pixel_boost_total : int):
subsample_frame = aligned_face_frame.reshape(model_size, pixel_boost_total, model_size, pixel_boost_total, 3)
subsample_frame = subsample_frame.transpose(1, 3, 0, 2, 4).reshape(pixel_boost_total ** 2, model_size, model_size, 3)
return subsample_frame
def explode_pixel_boost(self, subsample_frame, model_size, pixel_boost_total, pixel_boost_size):
final_frame = np.stack(subsample_frame, axis = 0).reshape(pixel_boost_total, pixel_boost_total, model_size, model_size, 3)
final_frame = final_frame.transpose(2, 0, 3, 1, 4).reshape(pixel_boost_size, pixel_boost_size, 3)
return final_frame
def process_mask(self, processor, frame:Frame, target:Frame):
img_mask = processor.Run(frame, self.options.masking_text)
img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
if self.options.show_face_masking:
result = (1 - img_mask) * frame.astype(np.float32)
return np.uint8(result)
target = target.astype(np.float32)
result = (1-img_mask) * target
result += img_mask * frame.astype(np.float32)
return np.uint8(result)
# Code for mouth restoration adapted from https://github.com/iVideoGameBoss/iRoopDeepFaceCam
def create_mouth_mask(self, face: Face, frame: Frame):
mouth_cutout = None
landmarks = face.landmark_2d_106
if landmarks is not None:
# Get mouth landmarks (indices 52 to 71 typically represent the outer mouth)
mouth_points = landmarks[52:71].astype(np.int32)
# Add padding to mouth area
min_x, min_y = np.min(mouth_points, axis=0)
max_x, max_y = np.max(mouth_points, axis=0)
min_x = max(0, min_x - (15*6))
min_y = max(0, min_y - 22)
max_x = min(frame.shape[1], max_x + (15*6))
max_y = min(frame.shape[0], max_y + (90*6))
# Extract the mouth area from the frame using the calculated bounding box
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
return mouth_cutout, (min_x, min_y, max_x, max_y)
def create_feathered_mask(self, shape, feather_amount=30):
mask = np.zeros(shape[:2], dtype=np.float32)
center = (shape[1] // 2, shape[0] // 2)
cv2.ellipse(mask, center, (shape[1] // 2 - feather_amount, shape[0] // 2 - feather_amount),
0, 0, 360, 1, -1)
mask = cv2.GaussianBlur(mask, (feather_amount*2+1, feather_amount*2+1), 0)
return mask / np.max(mask)
def apply_mouth_area(self, frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple) -> np.ndarray:
min_x, min_y, max_x, max_y = mouth_box
box_width = max_x - min_x
box_height = max_y - min_y
# Resize the mouth cutout to match the mouth box size
if mouth_cutout is None or box_width is None or box_height is None:
return frame
try:
resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height))
# Extract the region of interest (ROI) from the target frame
roi = frame[min_y:max_y, min_x:max_x]
# Ensure the ROI and resized_mouth_cutout have the same shape
if roi.shape != resized_mouth_cutout.shape:
resized_mouth_cutout = cv2.resize(resized_mouth_cutout, (roi.shape[1], roi.shape[0]))
# Apply color transfer from ROI to mouth cutout
color_corrected_mouth = self.apply_color_transfer(resized_mouth_cutout, roi)
# Create a feathered mask with increased feather amount
feather_amount = min(30, box_width // 15, box_height // 15)
mask = self.create_feathered_mask(resized_mouth_cutout.shape, feather_amount)
# Blend the color-corrected mouth cutout with the ROI using the feathered mask
mask = mask[:,:,np.newaxis] # Add channel dimension to mask
blended = (color_corrected_mouth * mask + roi * (1 - mask)).astype(np.uint8)
# Place the blended result back into the frame
frame[min_y:max_y, min_x:max_x] = blended
except Exception as e:
print(f'Error {e}')
pass
return frame
def apply_color_transfer(self, source, target):
"""
Apply color transfer from target to source image
"""
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
source_mean, source_std = cv2.meanStdDev(source)
target_mean, target_std = cv2.meanStdDev(target)
# Reshape mean and std to be broadcastable
source_mean = source_mean.reshape(1, 1, 3)
source_std = source_std.reshape(1, 1, 3)
target_mean = target_mean.reshape(1, 1, 3)
target_std = target_std.reshape(1, 1, 3)
# Perform the color transfer
source = (source - source_mean) * (target_std / source_std) + target_mean
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
def unload_models():
pass
def release_resources(self):
for p in self.processors:
p.Release()
self.processors.clear()
if self.videowriter is not None:
self.videowriter.close()
if self.streamwriter is not None:
self.streamwriter.Close()
|