File size: 38,307 Bytes
6ccea25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
import os
import cv2 
import numpy as np
import psutil

from roop.ProcessOptions import ProcessOptions

from roop.face_util import get_first_face, get_all_faces, rotate_anticlockwise, rotate_clockwise, clamp_cut_values
from roop.utilities import compute_cosine_distance, get_device, str_to_class, shuffle_array
import roop.vr_util as vr

from typing import Any, List, Callable
from roop.typing import Frame, Face
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Thread, Lock
from queue import Queue
from tqdm import tqdm
from roop.ffmpeg_writer import FFMPEG_VideoWriter
from roop.StreamWriter import StreamWriter
import roop.globals



# Poor man's enum to be able to compare to int
class eNoFaceAction():
    USE_ORIGINAL_FRAME = 0
    RETRY_ROTATED = 1
    SKIP_FRAME = 2
    SKIP_FRAME_IF_DISSIMILAR = 3,
    USE_LAST_SWAPPED = 4



def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
    queue: Queue[str] = Queue()
    for frame_path in temp_frame_paths:
        queue.put(frame_path)
    return queue


def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
    queues = []
    for _ in range(queue_per_future):
        if not queue.empty():
            queues.append(queue.get())
    return queues



class ProcessMgr():
    input_face_datas = []
    target_face_datas = []

    imagemask = None

    processors = []
    options : ProcessOptions = None
    
    num_threads = 1
    current_index = 0
    processing_threads = 1
    buffer_wait_time = 0.1

    lock = Lock()

    frames_queue = None
    processed_queue = None

    videowriter= None
    streamwriter = None

    progress_gradio = None
    total_frames = 0

    num_frames_no_face = 0
    last_swapped_frame = None

    output_to_file = None
    output_to_cam = None


    plugins =  { 
    'faceswap'          : 'FaceSwapInsightFace',
    'mask_clip2seg'     : 'Mask_Clip2Seg',
    'mask_xseg'         : 'Mask_XSeg',
    'codeformer'        : 'Enhance_CodeFormer',
    'gfpgan'            : 'Enhance_GFPGAN',
    'dmdnet'            : 'Enhance_DMDNet',
    'gpen'              : 'Enhance_GPEN',
    'restoreformer++'   : 'Enhance_RestoreFormerPPlus',
    'colorizer'         : 'Frame_Colorizer',
    'filter_generic'    : 'Frame_Filter',
    'removebg'          : 'Frame_Masking',
    'upscale'           : 'Frame_Upscale'
    }

    def __init__(self, progress):
        if progress is not None:
            self.progress_gradio = progress

    def reuseOldProcessor(self, name:str):
        for p in self.processors:
            if p.processorname == name:
                return p
            
        return None


    def initialize(self, input_faces, target_faces, options):
        self.input_face_datas = input_faces
        self.target_face_datas = target_faces
        self.num_frames_no_face = 0
        self.last_swapped_frame = None
        self.options = options
        devicename = get_device()

        roop.globals.g_desired_face_analysis=["landmark_3d_68", "landmark_2d_106","detection","recognition"]
        if options.swap_mode == "all_female" or options.swap_mode == "all_male":
            roop.globals.g_desired_face_analysis.append("genderage")
        elif options.swap_mode == "all_random":
            # don't modify original list
            self.input_face_datas = input_faces.copy()
            shuffle_array(self.input_face_datas)


        for p in self.processors:
            newp = next((x for x in options.processors.keys() if x == p.processorname), None)
            if newp is None:
                p.Release()
                del p

        newprocessors = []
        for key, extoption in options.processors.items():
            p = self.reuseOldProcessor(key)
            if p is None:
                classname = self.plugins[key]
                module = 'roop.processors.' + classname
                p = str_to_class(module, classname)
            if p is not None:
                extoption.update({"devicename": devicename})
                if p.type == "swap":
                    if self.options.swap_modelname == "InSwapper 128":
                        extoption.update({"modelname": "inswapper_128.onnx"})
                    elif self.options.swap_modelname == "ReSwapper 128":
                        extoption.update({"modelname": "reswapper_128.onnx"})
                    elif self.options.swap_modelname == "ReSwapper 256":
                        extoption.update({"modelname": "reswapper_256.onnx"})

                p.Initialize(extoption)
                newprocessors.append(p)
            else:
                print(f"Not using {module}")
        self.processors = newprocessors



        if isinstance(self.options.imagemask, dict) and self.options.imagemask.get("layers") and len(self.options.imagemask["layers"]) > 0:
            self.options.imagemask  = self.options.imagemask.get("layers")[0]
            # Get rid of alpha
            self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_RGBA2GRAY)
            if np.any(self.options.imagemask):
                mo = self.input_face_datas[0].faces[0].mask_offsets
                self.options.imagemask = self.blur_area(self.options.imagemask, mo[4], mo[5])
                self.options.imagemask = self.options.imagemask.astype(np.float32) / 255
                self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_GRAY2RGB)
            else:
                self.options.imagemask = None

        self.options.frame_processing = False
        for p in self.processors:
            if p.type.startswith("frame_"):
                self.options.frame_processing = True

            
 



    def run_batch(self, source_files, target_files, threads:int = 1):
        progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
        self.total_frames = len(source_files)
        self.num_threads = threads
        with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
            with ThreadPoolExecutor(max_workers=threads) as executor:
                futures = []
                queue = create_queue(source_files)
                queue_per_future = max(len(source_files) // threads, 1)
                while not queue.empty():
                    future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
                    futures.append(future)
                for future in as_completed(futures):
                    future.result()


    def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
        for f in current_files:
            if not roop.globals.processing:
                return
            
            # Decode the byte array into an OpenCV image
            temp_frame = cv2.imdecode(np.fromfile(f, dtype=np.uint8), cv2.IMREAD_COLOR)
            if temp_frame is not None:
                if self.options.frame_processing:
                    for p in self.processors:
                        frame = p.Run(temp_frame)
                    resimg = frame
                else:
                    resimg = self.process_frame(temp_frame)
                if resimg is not None:
                    i = source_files.index(f)
                    # Also let numpy write the file to support utf-8/16 filenames
                    cv2.imencode(f'.{roop.globals.CFG.output_image_format}',resimg)[1].tofile(target_files[i])
            if update:
                update()



    def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
        num_frame = 0
        total_num = frame_end - frame_start
        if frame_start > 0:
            cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)

        while True and roop.globals.processing:
            ret, frame = cap.read()
            if not ret:
                break
                
            self.frames_queue[num_frame % num_threads].put(frame, block=True)
            num_frame += 1
            if num_frame == total_num:
                break

        for i in range(num_threads):
            self.frames_queue[i].put(None)



    def process_videoframes(self, threadindex, progress) -> None:
        while True:
            frame = self.frames_queue[threadindex].get()
            if frame is None:
                self.processing_threads -= 1
                self.processed_queue[threadindex].put((False, None))
                return
            else:
                if self.options.frame_processing:
                    for p in self.processors:
                        frame = p.Run(frame)
                    resimg = frame
                else:                            
                    resimg = self.process_frame(frame)
                self.processed_queue[threadindex].put((True, resimg))
                del frame
                progress()


    def write_frames_thread(self):
        nextindex = 0
        num_producers = self.num_threads
        
        while True:
            process, frame = self.processed_queue[nextindex % self.num_threads].get()
            nextindex += 1
            if frame is not None:
                if self.output_to_file:
                    self.videowriter.write_frame(frame)
                if self.output_to_cam:
                    self.streamwriter.WriteToStream(frame)
                del frame
            elif process == False:
                num_producers -= 1
                if num_producers < 1:
                    return
            


    def run_batch_inmem(self, output_method, source_video, target_video, frame_start, frame_end, fps, threads:int = 1):
        if len(self.processors) < 1:
            print("No processor defined!")
            return

        cap = cv2.VideoCapture(source_video)
        # frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        frame_count = (frame_end - frame_start) + 1
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        processed_resolution = None
        for p in self.processors:
            if hasattr(p, 'getProcessedResolution'):
                processed_resolution = p.getProcessedResolution(width, height)
                print(f"Processed resolution: {processed_resolution}")
        if processed_resolution is not None:
            width = processed_resolution[0]
            height = processed_resolution[1]


        self.total_frames = frame_count
        self.num_threads = threads

        self.processing_threads = self.num_threads
        self.frames_queue = []
        self.processed_queue = []
        for _ in range(threads):
            self.frames_queue.append(Queue(1))
            self.processed_queue.append(Queue(1))

        self.output_to_file = output_method != "Virtual Camera"
        self.output_to_cam = output_method == "Virtual Camera" or output_method == "Both"

        if self.output_to_file:
            self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)
        if self.output_to_cam:
            self.streamwriter = StreamWriter((width, height), int(fps))

        readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
        readthread.start()

        writethread = Thread(target=self.write_frames_thread)
        writethread.start()

        progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
        with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
            with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
                futures = []
                
                for threadindex in range(threads):
                    future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
                    futures.append(future)
                
                for future in as_completed(futures):
                    future.result()
        # wait for the task to complete
        readthread.join()
        writethread.join()
        cap.release()
        if self.output_to_file:
            self.videowriter.close()
        if self.output_to_cam:
            self.streamwriter.Close()

        self.frames_queue.clear()
        self.processed_queue.clear()




    def update_progress(self, progress: Any = None) -> None:
        process = psutil.Process(os.getpid())
        memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
        progress.set_postfix({
            'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
            'execution_threads': self.num_threads
        })
        progress.update(1)
        if self.progress_gradio is not None:
            self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')



    def process_frame(self, frame:Frame):
        if len(self.input_face_datas) < 1 and not self.options.show_face_masking:
            return frame
        temp_frame = frame.copy()
        num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
        if num_swapped > 0:
            if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME_IF_DISSIMILAR:
                if len(self.input_face_datas) > num_swapped:
                    return None
            self.num_frames_no_face = 0
            self.last_swapped_frame = temp_frame.copy()
            return temp_frame
        if roop.globals.no_face_action == eNoFaceAction.USE_LAST_SWAPPED:
            if self.last_swapped_frame is not None and self.num_frames_no_face < self.options.max_num_reuse_frame:
                self.num_frames_no_face += 1
                return self.last_swapped_frame.copy()
            return frame

        elif roop.globals.no_face_action == eNoFaceAction.USE_ORIGINAL_FRAME:
            return frame
        if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME:
            #This only works with in-mem processing, as it simply skips the frame.
            #For 'extract frames' it simply leaves the unprocessed frame unprocessed and it gets used in the final output by ffmpeg.
            #If we could delete that frame here, that'd work but that might cause ffmpeg to fail unless the frames are renamed, and I don't think we have the info on what frame it actually is?????
            #alternatively, it could mark all the necessary frames for deletion, delete them at the end, then rename the remaining frames that might work?
            return None
        else:
            return self.retry_rotated(frame)

    def retry_rotated(self, frame):
        copyframe = frame.copy()
        copyframe = rotate_clockwise(copyframe)
        temp_frame = copyframe.copy()
        num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
        if num_swapped > 0:
            return rotate_anticlockwise(temp_frame)
        
        copyframe = frame.copy()
        copyframe = rotate_anticlockwise(copyframe)
        temp_frame = copyframe.copy()
        num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
        if num_swapped > 0:
            return rotate_clockwise(temp_frame)
        del copyframe
        return frame
        


    def swap_faces(self, frame, temp_frame):
        num_faces_found = 0

        if self.options.swap_mode == "first":
            face = get_first_face(frame)

            if face is None:
                return num_faces_found, frame
            
            num_faces_found += 1
            temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
            del face

        else:
            faces = get_all_faces(frame)
            if faces is None:
                return num_faces_found, frame
            
            if self.options.swap_mode == "all":
                for face in faces:
                    num_faces_found += 1
                    temp_frame = self.process_face(self.options.selected_index, face, temp_frame)

            elif self.options.swap_mode == "all_input" or self.options.swap_mode == "all_random":
                for i,face in enumerate(faces):
                    num_faces_found += 1
                    if i < len(self.input_face_datas):
                        temp_frame = self.process_face(i, face, temp_frame)
                    else:
                        break
            
            elif self.options.swap_mode == "selected":
                num_targetfaces = len(self.target_face_datas) 
                use_index = num_targetfaces == 1
                for i,tf in enumerate(self.target_face_datas):
                    for face in faces:
                        if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
                            if i < len(self.input_face_datas):
                                if use_index:
                                    temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
                                else:
                                    temp_frame = self.process_face(i, face, temp_frame)
                                num_faces_found += 1
                            if not roop.globals.vr_mode and num_faces_found == num_targetfaces:
                                break
            elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
                gender = 'F' if self.options.swap_mode == "all_female" else 'M'
                for face in faces:
                    if face.sex == gender:
                        num_faces_found += 1
                        temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
            
            # might be slower but way more clean to release everything here
            for face in faces:
                del face
            faces.clear()



        if roop.globals.vr_mode and num_faces_found % 2 > 0:
            # stereo image, there has to be an even number of faces
            num_faces_found = 0
            return num_faces_found, frame
        if num_faces_found == 0:
            return num_faces_found, frame

        #maskprocessor = next((x for x in self.processors if x.type == 'mask'), None)

        if self.options.imagemask is not None and self.options.imagemask.shape == frame.shape:
            temp_frame = self.simple_blend_with_mask(temp_frame, frame, self.options.imagemask)
        return num_faces_found, temp_frame


    def rotation_action(self, original_face:Face, frame:Frame):
        (height, width) = frame.shape[:2]

        bounding_box_width = original_face.bbox[2] - original_face.bbox[0]
        bounding_box_height = original_face.bbox[3] - original_face.bbox[1]
        horizontal_face = bounding_box_width > bounding_box_height

        center_x = width // 2.0
        start_x = original_face.bbox[0]
        end_x = original_face.bbox[2]
        bbox_center_x = start_x + (bounding_box_width // 2.0)

        # need to leverage the array of landmarks as decribed here:
        # https://github.com/deepinsight/insightface/tree/master/alignment/coordinate_reg
        # basically, we should be able to check for the relative position of eyes and nose
        # then use that to determine which way the face is actually facing when in a horizontal position
        # and use that to determine the correct rotation_action

        forehead_x = original_face.landmark_2d_106[72][0]
        chin_x = original_face.landmark_2d_106[0][0]

        if horizontal_face:
            if chin_x < forehead_x:
                # this is someone lying down with their face like this (:
                return "rotate_anticlockwise"
            elif forehead_x < chin_x:
                # this is someone lying down with their face like this :)
                return "rotate_clockwise"
            if bbox_center_x >= center_x:
                # this is someone lying down with their face in the right hand side of the frame
                return "rotate_anticlockwise"
            if bbox_center_x < center_x:
                # this is someone lying down with their face in the left hand side of the frame
                return "rotate_clockwise"

        return None


    def auto_rotate_frame(self, original_face, frame:Frame):
        target_face = original_face
        original_frame = frame

        rotation_action = self.rotation_action(original_face, frame)

        if rotation_action == "rotate_anticlockwise":
            #face is horizontal, rotating frame anti-clockwise and getting face bounding box from rotated frame
            frame = rotate_anticlockwise(frame)
        elif rotation_action == "rotate_clockwise":
            #face is horizontal, rotating frame clockwise and getting face bounding box from rotated frame
            frame = rotate_clockwise(frame)

        return target_face, frame, rotation_action
    

    def auto_unrotate_frame(self, frame:Frame, rotation_action):
        if rotation_action == "rotate_anticlockwise":
            return rotate_clockwise(frame)
        elif rotation_action == "rotate_clockwise":
            return rotate_anticlockwise(frame)
        
        return frame



    def process_face(self,face_index, target_face:Face, frame:Frame):
        from roop.face_util import align_crop

        enhanced_frame = None
        if(len(self.input_face_datas) > 0):
            inputface = self.input_face_datas[face_index].faces[0]
        else:
            inputface = None

        rotation_action = None
        if roop.globals.autorotate_faces:
            # check for sideways rotation of face
            rotation_action = self.rotation_action(target_face, frame)
            if rotation_action is not None:
                (startX, startY, endX, endY) = target_face["bbox"].astype("int")
                width = endX - startX
                height = endY - startY
                offs = int(max(width,height) * 0.25)
                rotcutframe,startX, startY, endX, endY = self.cutout(frame, startX - offs, startY - offs, endX + offs, endY + offs)
                if rotation_action == "rotate_anticlockwise":
                    rotcutframe = rotate_anticlockwise(rotcutframe)
                elif rotation_action == "rotate_clockwise":
                    rotcutframe = rotate_clockwise(rotcutframe)
                # rotate image and re-detect face to correct wonky landmarks
                rotface = get_first_face(rotcutframe)
                if rotface is None:
                    rotation_action = None
                else:
                    saved_frame = frame.copy()
                    frame = rotcutframe
                    target_face = rotface



        # if roop.globals.vr_mode:
            # bbox = target_face.bbox
            # [orig_width, orig_height, _] = frame.shape

            # # Convert bounding box to ints
            # x1, y1, x2, y2 = map(int, bbox)

            # # Determine the center of the bounding box
            # x_center = (x1 + x2) / 2
            # y_center = (y1 + y2) / 2

            # # Normalize coordinates to range [-1, 1]
            # x_center_normalized = x_center / (orig_width / 2) - 1
            # y_center_normalized = y_center / (orig_width / 2) - 1

            # # Convert normalized coordinates to spherical (theta, phi)
            # theta = x_center_normalized * 180  # Theta ranges from -180 to 180 degrees
            # phi = -y_center_normalized * 90  # Phi ranges from -90 to 90 degrees

            # img = vr.GetPerspective(frame, 90, theta, phi, 1280, 1280)  # Generate perspective image


        """ Code ported/adapted from Facefusion which borrowed the idea from Rope:
            Kind of subsampling the cutout and aligned face image and faceswapping slices of it up to
            the desired output resolution. This works around the current resolution limitations without using enhancers.
        """
        model_output_size = self.options.swap_output_size
        subsample_size = max(self.options.subsample_size, model_output_size)
        subsample_total = subsample_size // model_output_size
        aligned_img, M = align_crop(frame, target_face.kps, subsample_size)

        fake_frame = aligned_img
        target_face.matrix = M

        for p in self.processors:
            if p.type == 'swap':
                swap_result_frames = []
                subsample_frames = self.implode_pixel_boost(aligned_img, model_output_size, subsample_total)
                for sliced_frame in subsample_frames:
                    for _ in range(0,self.options.num_swap_steps):
                        sliced_frame = self.prepare_crop_frame(sliced_frame)
                        sliced_frame = p.Run(inputface, target_face, sliced_frame)
                        sliced_frame = self.normalize_swap_frame(sliced_frame)
                    swap_result_frames.append(sliced_frame)
                fake_frame = self.explode_pixel_boost(swap_result_frames, model_output_size, subsample_total, subsample_size)
                fake_frame = fake_frame.astype(np.uint8)
                scale_factor = 0.0
            elif p.type == 'mask':
                fake_frame = self.process_mask(p, aligned_img, fake_frame)
            else:
                enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)

        upscale = 512
        orig_width = fake_frame.shape[1]
        if orig_width != upscale:
            fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
        mask_offsets = (0,0,0,0,1,20) if inputface is None else inputface.mask_offsets

        
        if enhanced_frame is None:
            scale_factor = int(upscale / orig_width)
            result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
        else:
            result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)

        # Restore mouth before unrotating
        if self.options.restore_original_mouth:
            mouth_cutout, mouth_bb = self.create_mouth_mask(target_face, frame)
            result = self.apply_mouth_area(result, mouth_cutout, mouth_bb)

        if rotation_action is not None:
            fake_frame = self.auto_unrotate_frame(result, rotation_action)
            result = self.paste_simple(fake_frame, saved_frame, startX, startY)
        
        return result

        


    def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
        if start_x < 0:
            start_x = 0
        if start_y < 0:
            start_y = 0
        if end_x > frame.shape[1]:
            end_x = frame.shape[1]
        if end_y > frame.shape[0]:
            end_y = frame.shape[0]
        return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y

    def paste_simple(self, src:Frame, dest:Frame, start_x, start_y):
        end_x = start_x + src.shape[1]
        end_y = start_y + src.shape[0]

        start_x, end_x, start_y, end_y = clamp_cut_values(start_x, end_x, start_y, end_y, dest)
        dest[start_y:end_y, start_x:end_x] = src
        return dest
        
    def simple_blend_with_mask(self, image1, image2, mask):
        # Blend the images
        blended_image = image1.astype(np.float32) * (1.0 - mask) + image2.astype(np.float32) * mask
        return blended_image.astype(np.uint8)


    def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
        M_scale = M * scale_factor
        IM = cv2.invertAffineTransform(M_scale)

        face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
        # Generate white square sized as a upsk_face
        img_matte = np.zeros((upsk_face.shape[0],upsk_face.shape[1]), dtype=np.uint8)

        w = img_matte.shape[1]
        h = img_matte.shape[0]

        top = int(mask_offsets[0] * h)
        bottom = int(h - (mask_offsets[1] * h))
        left = int(mask_offsets[2] * w)
        right = int(w - (mask_offsets[3] * w))
        img_matte[top:bottom,left:right] = 255

        # Transform white square back to target_img
        img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0) 
        ##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
        img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0

        img_matte = self.blur_area(img_matte, mask_offsets[4], mask_offsets[5])
        #Normalize images to float values and reshape
        img_matte = img_matte.astype(np.float32)/255
        face_matte = face_matte.astype(np.float32)/255
        img_matte = np.minimum(face_matte, img_matte)
        if self.options.show_face_area_overlay:
            # Additional steps for green overlay
            green_overlay = np.zeros_like(target_img)
            green_color = [0, 255, 0]  # RGB for green
            for i in range(3):  # Apply green color where img_matte is not zero
                green_overlay[:, :, i] = np.where(img_matte > 0, green_color[i], 0)        ##Transform upcaled face back to target_img
        img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1]) 
        paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
        if upsk_face is not fake_face:
            fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
            paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)

        # Re-assemble image
        paste_face = img_matte * paste_face
        paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
        if self.options.show_face_area_overlay:
            # Overlay the green overlay on the final image
            paste_face = cv2.addWeighted(paste_face.astype(np.uint8), 1 - 0.5, green_overlay, 0.5, 0)
        return paste_face.astype(np.uint8)


    def blur_area(self, img_matte, num_erosion_iterations, blur_amount):
        # Detect the affine transformed white area
        mask_h_inds, mask_w_inds = np.where(img_matte==255) 
        # Calculate the size (and diagonal size) of transformed white area width and height boundaries
        mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) 
        mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
        mask_size = int(np.sqrt(mask_h*mask_w))
        # Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
        # k = max(mask_size//12, 8)
        k = max(mask_size//(blur_amount // 2) , blur_amount // 2)
        kernel = np.ones((k,k),np.uint8)
        img_matte = cv2.erode(img_matte,kernel,iterations = num_erosion_iterations)
        #Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
        # k = max(mask_size//24, 4) 
        k = max(mask_size//blur_amount, blur_amount//5) 
        kernel_size = (k, k)
        blur_size = tuple(2*i+1 for i in kernel_size)
        return cv2.GaussianBlur(img_matte, blur_size, 0)


    def prepare_crop_frame(self, swap_frame):
        model_type = 'inswapper'
        model_mean = [0.0, 0.0, 0.0]
        model_standard_deviation = [1.0, 1.0, 1.0]

        if model_type == 'ghost':
            swap_frame = swap_frame[:, :, ::-1] / 127.5 - 1
        else:
            swap_frame = swap_frame[:, :, ::-1] / 255.0
        swap_frame = (swap_frame - model_mean) / model_standard_deviation
        swap_frame = swap_frame.transpose(2, 0, 1)
        swap_frame = np.expand_dims(swap_frame, axis = 0).astype(np.float32)
        return swap_frame


    def normalize_swap_frame(self, swap_frame):
        model_type = 'inswapper'
        swap_frame = swap_frame.transpose(1, 2, 0)

        if model_type == 'ghost':
            swap_frame = (swap_frame * 127.5 + 127.5).round()
        else:
            swap_frame = (swap_frame * 255.0).round()
        swap_frame = swap_frame[:, :, ::-1]
        return swap_frame

    def implode_pixel_boost(self, aligned_face_frame, model_size, pixel_boost_total : int):
        subsample_frame = aligned_face_frame.reshape(model_size, pixel_boost_total, model_size, pixel_boost_total, 3)
        subsample_frame = subsample_frame.transpose(1, 3, 0, 2, 4).reshape(pixel_boost_total ** 2, model_size, model_size, 3)
        return subsample_frame


    def explode_pixel_boost(self, subsample_frame, model_size, pixel_boost_total, pixel_boost_size):
        final_frame = np.stack(subsample_frame, axis = 0).reshape(pixel_boost_total, pixel_boost_total, model_size, model_size, 3)
        final_frame = final_frame.transpose(2, 0, 3, 1, 4).reshape(pixel_boost_size, pixel_boost_size, 3)
        return final_frame

    def process_mask(self, processor, frame:Frame, target:Frame):
        img_mask = processor.Run(frame, self.options.masking_text)
        img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
        img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])

        if self.options.show_face_masking:
            result = (1 - img_mask) * frame.astype(np.float32)
            return np.uint8(result)


        target = target.astype(np.float32)
        result = (1-img_mask) * target
        result += img_mask * frame.astype(np.float32)
        return np.uint8(result)


    # Code for mouth restoration adapted from https://github.com/iVideoGameBoss/iRoopDeepFaceCam
    
    def create_mouth_mask(self, face: Face, frame: Frame):
        mouth_cutout = None
        
        landmarks = face.landmark_2d_106
        if landmarks is not None:
            # Get mouth landmarks (indices 52 to 71 typically represent the outer mouth)
            mouth_points = landmarks[52:71].astype(np.int32)
            
            # Add padding to mouth area
            min_x, min_y = np.min(mouth_points, axis=0)
            max_x, max_y = np.max(mouth_points, axis=0)
            min_x = max(0, min_x - (15*6))
            min_y = max(0, min_y - 22)
            max_x = min(frame.shape[1], max_x + (15*6))
            max_y = min(frame.shape[0], max_y + (90*6))
            
            # Extract the mouth area from the frame using the calculated bounding box
            mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()

        return mouth_cutout, (min_x, min_y, max_x, max_y)



    def create_feathered_mask(self, shape, feather_amount=30):
        mask = np.zeros(shape[:2], dtype=np.float32)
        center = (shape[1] // 2, shape[0] // 2)
        cv2.ellipse(mask, center, (shape[1] // 2 - feather_amount, shape[0] // 2 - feather_amount), 
                    0, 0, 360, 1, -1)
        mask = cv2.GaussianBlur(mask, (feather_amount*2+1, feather_amount*2+1), 0)
        return mask / np.max(mask)

    def apply_mouth_area(self, frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple) -> np.ndarray:
        min_x, min_y, max_x, max_y = mouth_box
        box_width = max_x - min_x
        box_height = max_y - min_y
        

        # Resize the mouth cutout to match the mouth box size
        if mouth_cutout is None or box_width is None or box_height is None:
            return frame
        try:
            resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height))
            
            # Extract the region of interest (ROI) from the target frame
            roi = frame[min_y:max_y, min_x:max_x]
            
            # Ensure the ROI and resized_mouth_cutout have the same shape
            if roi.shape != resized_mouth_cutout.shape:
                resized_mouth_cutout = cv2.resize(resized_mouth_cutout, (roi.shape[1], roi.shape[0]))
            
            # Apply color transfer from ROI to mouth cutout
            color_corrected_mouth = self.apply_color_transfer(resized_mouth_cutout, roi)
            
            # Create a feathered mask with increased feather amount
            feather_amount = min(30, box_width // 15, box_height // 15)
            mask = self.create_feathered_mask(resized_mouth_cutout.shape, feather_amount)
            
            # Blend the color-corrected mouth cutout with the ROI using the feathered mask
            mask = mask[:,:,np.newaxis]  # Add channel dimension to mask
            blended = (color_corrected_mouth * mask + roi * (1 - mask)).astype(np.uint8)
            
            # Place the blended result back into the frame
            frame[min_y:max_y, min_x:max_x] = blended
        except Exception as e:
            print(f'Error {e}')
            pass

        return frame

    def apply_color_transfer(self, source, target):
        """
        Apply color transfer from target to source image
        """
        source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
        target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")

        source_mean, source_std = cv2.meanStdDev(source)
        target_mean, target_std = cv2.meanStdDev(target)

        # Reshape mean and std to be broadcastable
        source_mean = source_mean.reshape(1, 1, 3)
        source_std = source_std.reshape(1, 1, 3)
        target_mean = target_mean.reshape(1, 1, 3)
        target_std = target_std.reshape(1, 1, 3)

        # Perform the color transfer
        source = (source - source_mean) * (target_std / source_std) + target_mean
        return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)



    def unload_models():
        pass


    def release_resources(self):
        for p in self.processors:
            p.Release()
        self.processors.clear()
        if self.videowriter is not None:
            self.videowriter.close()
        if self.streamwriter is not None:
            self.streamwriter.Close()