Spaces:
Running
Running
import threading | |
from typing import Any | |
import insightface | |
import roop.globals | |
from roop.typing import Frame, Face | |
import cv2 | |
import numpy as np | |
from skimage import transform as trans | |
from roop.capturer import get_video_frame | |
from roop.utilities import resolve_relative_path, conditional_thread_semaphore | |
FACE_ANALYSER = None | |
#THREAD_LOCK_ANALYSER = threading.Lock() | |
#THREAD_LOCK_SWAPPER = threading.Lock() | |
FACE_SWAPPER = None | |
def get_face_analyser() -> Any: | |
global FACE_ANALYSER | |
with conditional_thread_semaphore(): | |
if FACE_ANALYSER is None or roop.globals.g_current_face_analysis != roop.globals.g_desired_face_analysis: | |
model_path = resolve_relative_path('..') | |
# removed genderage | |
allowed_modules = roop.globals.g_desired_face_analysis | |
roop.globals.g_current_face_analysis = roop.globals.g_desired_face_analysis | |
if roop.globals.CFG.force_cpu: | |
print("Forcing CPU for Face Analysis") | |
FACE_ANALYSER = insightface.app.FaceAnalysis( | |
name="buffalo_l", | |
root=model_path, providers=["CPUExecutionProvider"],allowed_modules=allowed_modules | |
) | |
else: | |
FACE_ANALYSER = insightface.app.FaceAnalysis( | |
name="buffalo_l", root=model_path, providers=roop.globals.execution_providers,allowed_modules=allowed_modules | |
) | |
FACE_ANALYSER.prepare( | |
ctx_id=0, | |
det_size=(640, 640) if roop.globals.default_det_size else (320, 320), | |
) | |
return FACE_ANALYSER | |
def get_first_face(frame: Frame) -> Any: | |
try: | |
faces = get_face_analyser().get(frame) | |
return min(faces, key=lambda x: x.bbox[0]) | |
# return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0] | |
except: | |
return None | |
def get_all_faces(frame: Frame) -> Any: | |
try: | |
faces = get_face_analyser().get(frame) | |
return sorted(faces, key=lambda x: x.bbox[0]) | |
except: | |
return None | |
def extract_face_images(source_filename, video_info, extra_padding=-1.0): | |
face_data = [] | |
source_image = None | |
if video_info[0]: | |
frame = get_video_frame(source_filename, video_info[1]) | |
if frame is not None: | |
source_image = frame | |
else: | |
return face_data | |
else: | |
source_image = cv2.imdecode(np.fromfile(source_filename, dtype=np.uint8), cv2.IMREAD_COLOR) | |
faces = get_all_faces(source_image) | |
if faces is None: | |
return face_data | |
i = 0 | |
for face in faces: | |
(startX, startY, endX, endY) = face["bbox"].astype("int") | |
startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image) | |
if extra_padding > 0.0: | |
if source_image.shape[:2] == (512, 512): | |
i += 1 | |
face_data.append([face, source_image]) | |
continue | |
found = False | |
for i in range(1, 3): | |
(startX, startY, endX, endY) = face["bbox"].astype("int") | |
startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image) | |
cutout_padding = extra_padding | |
# top needs extra room for detection | |
padding = int((endY - startY) * cutout_padding) | |
oldY = startY | |
startY -= padding | |
factor = 0.25 if i == 1 else 0.5 | |
cutout_padding = factor | |
padding = int((endY - oldY) * cutout_padding) | |
endY += padding | |
padding = int((endX - startX) * cutout_padding) | |
startX -= padding | |
endX += padding | |
startX, endX, startY, endY = clamp_cut_values( | |
startX, endX, startY, endY, source_image | |
) | |
face_temp = source_image[startY:endY, startX:endX] | |
face_temp = resize_image_keep_content(face_temp) | |
testfaces = get_all_faces(face_temp) | |
if testfaces is not None and len(testfaces) > 0: | |
i += 1 | |
face_data.append([testfaces[0], face_temp]) | |
found = True | |
break | |
if not found: | |
print("No face found after resizing, this shouldn't happen!") | |
continue | |
face_temp = source_image[startY:endY, startX:endX] | |
if face_temp.size < 1: | |
continue | |
i += 1 | |
face_data.append([face, face_temp]) | |
return face_data | |
def clamp_cut_values(startX, endX, startY, endY, image): | |
if startX < 0: | |
startX = 0 | |
if endX > image.shape[1]: | |
endX = image.shape[1] | |
if startY < 0: | |
startY = 0 | |
if endY > image.shape[0]: | |
endY = image.shape[0] | |
return startX, endX, startY, endY | |
def face_offset_top(face: Face, offset): | |
face["bbox"][1] += offset | |
face["bbox"][3] += offset | |
lm106 = face.landmark_2d_106 | |
add = np.full_like(lm106, [0, offset]) | |
face["landmark_2d_106"] = lm106 + add | |
return face | |
def resize_image_keep_content(image, new_width=512, new_height=512): | |
dim = None | |
(h, w) = image.shape[:2] | |
if h > w: | |
r = new_height / float(h) | |
dim = (int(w * r), new_height) | |
else: | |
# Calculate the ratio of the width and construct the dimensions | |
r = new_width / float(w) | |
dim = (new_width, int(h * r)) | |
image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA) | |
(h, w) = image.shape[:2] | |
if h == new_height and w == new_width: | |
return image | |
resize_img = np.zeros(shape=(new_height, new_width, 3), dtype=image.dtype) | |
offs = (new_width - w) if h == new_height else (new_height - h) | |
startoffs = int(offs // 2) if offs % 2 == 0 else int(offs // 2) + 1 | |
offs = int(offs // 2) | |
if h == new_height: | |
resize_img[0:new_height, startoffs : new_width - offs] = image | |
else: | |
resize_img[startoffs : new_height - offs, 0:new_width] = image | |
return resize_img | |
def rotate_image_90(image, rotate=True): | |
if rotate: | |
return np.rot90(image) | |
else: | |
return np.rot90(image, 1, (1, 0)) | |
def rotate_anticlockwise(frame): | |
return rotate_image_90(frame) | |
def rotate_clockwise(frame): | |
return rotate_image_90(frame, False) | |
def rotate_image_180(image): | |
return np.flip(image, 0) | |
# alignment code from insightface https://github.com/deepinsight/insightface/blob/master/python-package/insightface/utils/face_align.py | |
arcface_dst = np.array( | |
[ | |
[38.2946, 51.6963], | |
[73.5318, 51.5014], | |
[56.0252, 71.7366], | |
[41.5493, 92.3655], | |
[70.7299, 92.2041], | |
], | |
dtype=np.float32, | |
) | |
""" def estimate_norm(lmk, image_size=112): | |
assert lmk.shape == (5, 2) | |
if image_size % 112 == 0: | |
ratio = float(image_size) / 112.0 | |
diff_x = 0 | |
elif image_size % 128 == 0: | |
ratio = float(image_size) / 128.0 | |
diff_x = 8.0 * ratio | |
elif image_size % 512 == 0: | |
ratio = float(image_size) / 512.0 | |
diff_x = 32.0 * ratio | |
dst = arcface_dst * ratio | |
dst[:, 0] += diff_x | |
tform = trans.SimilarityTransform() | |
tform.estimate(lmk, dst) | |
M = tform.params[0:2, :] | |
return M | |
""" | |
def estimate_norm(lmk, image_size=112): | |
if image_size%112==0: | |
ratio = float(image_size)/112.0 | |
diff_x = 0 | |
else: | |
ratio = float(image_size)/128.0 | |
diff_x = 8.0*ratio | |
dst = arcface_dst * ratio | |
dst[:,0] += diff_x | |
if image_size == 160: | |
dst[:,0] += 0.1 | |
dst[:,1] += 0.1 | |
elif image_size == 256: | |
dst[:,0] += 0.5 | |
dst[:,1] += 0.5 | |
elif image_size == 320: | |
dst[:,0] += 0.75 | |
dst[:,1] += 0.75 | |
elif image_size == 512: | |
dst[:,0] += 1.5 | |
dst[:,1] += 1.5 | |
tform = trans.SimilarityTransform() | |
tform.estimate(lmk, dst) | |
M = tform.params[0:2, :] | |
return M | |
# aligned, M = norm_crop2(f[1], face.kps, 512) | |
def align_crop(img, landmark, image_size=112, mode="arcface"): | |
M = estimate_norm(landmark, image_size) | |
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) | |
return warped, M | |
def square_crop(im, S): | |
if im.shape[0] > im.shape[1]: | |
height = S | |
width = int(float(im.shape[1]) / im.shape[0] * S) | |
scale = float(S) / im.shape[0] | |
else: | |
width = S | |
height = int(float(im.shape[0]) / im.shape[1] * S) | |
scale = float(S) / im.shape[1] | |
resized_im = cv2.resize(im, (width, height)) | |
det_im = np.zeros((S, S, 3), dtype=np.uint8) | |
det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im | |
return det_im, scale | |
def transform(data, center, output_size, scale, rotation): | |
scale_ratio = scale | |
rot = float(rotation) * np.pi / 180.0 | |
# translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) | |
t1 = trans.SimilarityTransform(scale=scale_ratio) | |
cx = center[0] * scale_ratio | |
cy = center[1] * scale_ratio | |
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) | |
t3 = trans.SimilarityTransform(rotation=rot) | |
t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2)) | |
t = t1 + t2 + t3 + t4 | |
M = t.params[0:2] | |
cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) | |
return cropped, M | |
def trans_points2d(pts, M): | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
# print('new_pt', new_pt.shape, new_pt) | |
new_pts[i] = new_pt[0:2] | |
return new_pts | |
def trans_points3d(pts, M): | |
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) | |
# print(scale) | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
# print('new_pt', new_pt.shape, new_pt) | |
new_pts[i][0:2] = new_pt[0:2] | |
new_pts[i][2] = pts[i][2] * scale | |
return new_pts | |
def trans_points(pts, M): | |
if pts.shape[1] == 2: | |
return trans_points2d(pts, M) | |
else: | |
return trans_points3d(pts, M) | |
def create_blank_image(width, height): | |
img = np.zeros((height, width, 4), dtype=np.uint8) | |
img[:] = [0,0,0,0] | |
return img | |