Spaces:
Running
Running
from typing import Any, List, Callable | |
import cv2 | |
import numpy as np | |
import onnxruntime | |
import roop.globals | |
from roop.typing import Face, Frame, FaceSet | |
from roop.utilities import resolve_relative_path | |
class Enhance_CodeFormer(): | |
model_codeformer = None | |
plugin_options:dict = None | |
processorname = 'codeformer' | |
type = 'enhance' | |
def Initialize(self, plugin_options:dict): | |
if self.plugin_options is not None: | |
if self.plugin_options["devicename"] != plugin_options["devicename"]: | |
self.Release() | |
self.plugin_options = plugin_options | |
if self.model_codeformer is None: | |
# replace Mac mps with cpu for the moment | |
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') | |
model_path = resolve_relative_path('../models/CodeFormer/CodeFormerv0.1.onnx') | |
self.model_codeformer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) | |
self.model_inputs = self.model_codeformer.get_inputs() | |
model_outputs = self.model_codeformer.get_outputs() | |
self.io_binding = self.model_codeformer.io_binding() | |
self.io_binding.bind_cpu_input(self.model_inputs[1].name, np.array([0.5])) | |
self.io_binding.bind_output(model_outputs[0].name, self.devicename) | |
def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame: | |
input_size = temp_frame.shape[1] | |
# preprocess | |
temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC) | |
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) | |
temp_frame = temp_frame.astype('float32') / 255.0 | |
temp_frame = (temp_frame - 0.5) / 0.5 | |
temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2) | |
self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame.astype(np.float32)) | |
self.model_codeformer.run_with_iobinding(self.io_binding) | |
ort_outs = self.io_binding.copy_outputs_to_cpu() | |
result = ort_outs[0][0] | |
del ort_outs | |
# post-process | |
result = result.transpose((1, 2, 0)) | |
un_min = -1.0 | |
un_max = 1.0 | |
result = np.clip(result, un_min, un_max) | |
result = (result - un_min) / (un_max - un_min) | |
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR) | |
result = (result * 255.0).round() | |
scale_factor = int(result.shape[1] / input_size) | |
return result.astype(np.uint8), scale_factor | |
def Release(self): | |
del self.model_codeformer | |
self.model_codeformer = None | |
del self.io_binding | |
self.io_binding = None | |