import os import cv2 import numpy as np import psutil from roop.ProcessOptions import ProcessOptions from roop.face_util import get_first_face, get_all_faces, rotate_anticlockwise, rotate_clockwise, clamp_cut_values from roop.utilities import compute_cosine_distance, get_device, str_to_class, shuffle_array import roop.vr_util as vr from typing import Any, List, Callable from roop.typing import Frame, Face from concurrent.futures import ThreadPoolExecutor, as_completed from threading import Thread, Lock from queue import Queue from tqdm import tqdm from roop.ffmpeg_writer import FFMPEG_VideoWriter from roop.StreamWriter import StreamWriter import roop.globals # Poor man's enum to be able to compare to int class eNoFaceAction(): USE_ORIGINAL_FRAME = 0 RETRY_ROTATED = 1 SKIP_FRAME = 2 SKIP_FRAME_IF_DISSIMILAR = 3, USE_LAST_SWAPPED = 4 def create_queue(temp_frame_paths: List[str]) -> Queue[str]: queue: Queue[str] = Queue() for frame_path in temp_frame_paths: queue.put(frame_path) return queue def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]: queues = [] for _ in range(queue_per_future): if not queue.empty(): queues.append(queue.get()) return queues class ProcessMgr(): input_face_datas = [] target_face_datas = [] imagemask = None processors = [] options : ProcessOptions = None num_threads = 1 current_index = 0 processing_threads = 1 buffer_wait_time = 0.1 lock = Lock() frames_queue = None processed_queue = None videowriter= None streamwriter = None progress_gradio = None total_frames = 0 num_frames_no_face = 0 last_swapped_frame = None output_to_file = None output_to_cam = None plugins = { 'faceswap' : 'FaceSwapInsightFace', 'mask_clip2seg' : 'Mask_Clip2Seg', 'mask_xseg' : 'Mask_XSeg', 'codeformer' : 'Enhance_CodeFormer', 'gfpgan' : 'Enhance_GFPGAN', 'dmdnet' : 'Enhance_DMDNet', 'gpen' : 'Enhance_GPEN', 'restoreformer++' : 'Enhance_RestoreFormerPPlus', 'colorizer' : 'Frame_Colorizer', 'filter_generic' : 'Frame_Filter', 'removebg' : 'Frame_Masking', 'upscale' : 'Frame_Upscale' } def __init__(self, progress): if progress is not None: self.progress_gradio = progress def reuseOldProcessor(self, name:str): for p in self.processors: if p.processorname == name: return p return None def initialize(self, input_faces, target_faces, options): self.input_face_datas = input_faces self.target_face_datas = target_faces self.num_frames_no_face = 0 self.last_swapped_frame = None self.options = options devicename = get_device() roop.globals.g_desired_face_analysis=["landmark_3d_68", "landmark_2d_106","detection","recognition"] if options.swap_mode == "all_female" or options.swap_mode == "all_male": roop.globals.g_desired_face_analysis.append("genderage") elif options.swap_mode == "all_random": # don't modify original list self.input_face_datas = input_faces.copy() shuffle_array(self.input_face_datas) for p in self.processors: newp = next((x for x in options.processors.keys() if x == p.processorname), None) if newp is None: p.Release() del p newprocessors = [] for key, extoption in options.processors.items(): p = self.reuseOldProcessor(key) if p is None: classname = self.plugins[key] module = 'roop.processors.' + classname p = str_to_class(module, classname) if p is not None: extoption.update({"devicename": devicename}) if p.type == "swap": if self.options.swap_modelname == "InSwapper 128": extoption.update({"modelname": "inswapper_128.onnx"}) elif self.options.swap_modelname == "ReSwapper 128": extoption.update({"modelname": "reswapper_128.onnx"}) elif self.options.swap_modelname == "ReSwapper 256": extoption.update({"modelname": "reswapper_256.onnx"}) p.Initialize(extoption) newprocessors.append(p) else: print(f"Not using {module}") self.processors = newprocessors if isinstance(self.options.imagemask, dict) and self.options.imagemask.get("layers") and len(self.options.imagemask["layers"]) > 0: self.options.imagemask = self.options.imagemask.get("layers")[0] # Get rid of alpha self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_RGBA2GRAY) if np.any(self.options.imagemask): mo = self.input_face_datas[0].faces[0].mask_offsets self.options.imagemask = self.blur_area(self.options.imagemask, mo[4], mo[5]) self.options.imagemask = self.options.imagemask.astype(np.float32) / 255 self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_GRAY2RGB) else: self.options.imagemask = None self.options.frame_processing = False for p in self.processors: if p.type.startswith("frame_"): self.options.frame_processing = True def run_batch(self, source_files, target_files, threads:int = 1): progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]' self.total_frames = len(source_files) self.num_threads = threads with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress: with ThreadPoolExecutor(max_workers=threads) as executor: futures = [] queue = create_queue(source_files) queue_per_future = max(len(source_files) // threads, 1) while not queue.empty(): future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress)) futures.append(future) for future in as_completed(futures): future.result() def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None: for f in current_files: if not roop.globals.processing: return # Decode the byte array into an OpenCV image temp_frame = cv2.imdecode(np.fromfile(f, dtype=np.uint8), cv2.IMREAD_COLOR) if temp_frame is not None: if self.options.frame_processing: for p in self.processors: frame = p.Run(temp_frame) resimg = frame else: resimg = self.process_frame(temp_frame) if resimg is not None: i = source_files.index(f) # Also let numpy write the file to support utf-8/16 filenames cv2.imencode(f'.{roop.globals.CFG.output_image_format}',resimg)[1].tofile(target_files[i]) if update: update() def read_frames_thread(self, cap, frame_start, frame_end, num_threads): num_frame = 0 total_num = frame_end - frame_start if frame_start > 0: cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start) while True and roop.globals.processing: ret, frame = cap.read() if not ret: break self.frames_queue[num_frame % num_threads].put(frame, block=True) num_frame += 1 if num_frame == total_num: break for i in range(num_threads): self.frames_queue[i].put(None) def process_videoframes(self, threadindex, progress) -> None: while True: frame = self.frames_queue[threadindex].get() if frame is None: self.processing_threads -= 1 self.processed_queue[threadindex].put((False, None)) return else: if self.options.frame_processing: for p in self.processors: frame = p.Run(frame) resimg = frame else: resimg = self.process_frame(frame) self.processed_queue[threadindex].put((True, resimg)) del frame progress() def write_frames_thread(self): nextindex = 0 num_producers = self.num_threads while True: process, frame = self.processed_queue[nextindex % self.num_threads].get() nextindex += 1 if frame is not None: if self.output_to_file: self.videowriter.write_frame(frame) if self.output_to_cam: self.streamwriter.WriteToStream(frame) del frame elif process == False: num_producers -= 1 if num_producers < 1: return def run_batch_inmem(self, output_method, source_video, target_video, frame_start, frame_end, fps, threads:int = 1): if len(self.processors) < 1: print("No processor defined!") return cap = cv2.VideoCapture(source_video) # frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_count = (frame_end - frame_start) + 1 width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) processed_resolution = None for p in self.processors: if hasattr(p, 'getProcessedResolution'): processed_resolution = p.getProcessedResolution(width, height) print(f"Processed resolution: {processed_resolution}") if processed_resolution is not None: width = processed_resolution[0] height = processed_resolution[1] self.total_frames = frame_count self.num_threads = threads self.processing_threads = self.num_threads self.frames_queue = [] self.processed_queue = [] for _ in range(threads): self.frames_queue.append(Queue(1)) self.processed_queue.append(Queue(1)) self.output_to_file = output_method != "Virtual Camera" self.output_to_cam = output_method == "Virtual Camera" or output_method == "Both" if self.output_to_file: self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None) if self.output_to_cam: self.streamwriter = StreamWriter((width, height), int(fps)) readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads)) readthread.start() writethread = Thread(target=self.write_frames_thread) writethread.start() progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]' with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress: with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor: futures = [] for threadindex in range(threads): future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress)) futures.append(future) for future in as_completed(futures): future.result() # wait for the task to complete readthread.join() writethread.join() cap.release() if self.output_to_file: self.videowriter.close() if self.output_to_cam: self.streamwriter.Close() self.frames_queue.clear() self.processed_queue.clear() def update_progress(self, progress: Any = None) -> None: process = psutil.Process(os.getpid()) memory_usage = process.memory_info().rss / 1024 / 1024 / 1024 progress.set_postfix({ 'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB', 'execution_threads': self.num_threads }) progress.update(1) if self.progress_gradio is not None: self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames') def process_frame(self, frame:Frame): if len(self.input_face_datas) < 1 and not self.options.show_face_masking: return frame temp_frame = frame.copy() num_swapped, temp_frame = self.swap_faces(frame, temp_frame) if num_swapped > 0: if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME_IF_DISSIMILAR: if len(self.input_face_datas) > num_swapped: return None self.num_frames_no_face = 0 self.last_swapped_frame = temp_frame.copy() return temp_frame if roop.globals.no_face_action == eNoFaceAction.USE_LAST_SWAPPED: if self.last_swapped_frame is not None and self.num_frames_no_face < self.options.max_num_reuse_frame: self.num_frames_no_face += 1 return self.last_swapped_frame.copy() return frame elif roop.globals.no_face_action == eNoFaceAction.USE_ORIGINAL_FRAME: return frame if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME: #This only works with in-mem processing, as it simply skips the frame. #For 'extract frames' it simply leaves the unprocessed frame unprocessed and it gets used in the final output by ffmpeg. #If we could delete that frame here, that'd work but that might cause ffmpeg to fail unless the frames are renamed, and I don't think we have the info on what frame it actually is????? #alternatively, it could mark all the necessary frames for deletion, delete them at the end, then rename the remaining frames that might work? return None else: return self.retry_rotated(frame) def retry_rotated(self, frame): copyframe = frame.copy() copyframe = rotate_clockwise(copyframe) temp_frame = copyframe.copy() num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame) if num_swapped > 0: return rotate_anticlockwise(temp_frame) copyframe = frame.copy() copyframe = rotate_anticlockwise(copyframe) temp_frame = copyframe.copy() num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame) if num_swapped > 0: return rotate_clockwise(temp_frame) del copyframe return frame def swap_faces(self, frame, temp_frame): num_faces_found = 0 if self.options.swap_mode == "first": face = get_first_face(frame) if face is None: return num_faces_found, frame num_faces_found += 1 temp_frame = self.process_face(self.options.selected_index, face, temp_frame) del face else: faces = get_all_faces(frame) if faces is None: return num_faces_found, frame if self.options.swap_mode == "all": for face in faces: num_faces_found += 1 temp_frame = self.process_face(self.options.selected_index, face, temp_frame) elif self.options.swap_mode == "all_input" or self.options.swap_mode == "all_random": for i,face in enumerate(faces): num_faces_found += 1 if i < len(self.input_face_datas): temp_frame = self.process_face(i, face, temp_frame) else: break elif self.options.swap_mode == "selected": num_targetfaces = len(self.target_face_datas) use_index = num_targetfaces == 1 for i,tf in enumerate(self.target_face_datas): for face in faces: if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold: if i < len(self.input_face_datas): if use_index: temp_frame = self.process_face(self.options.selected_index, face, temp_frame) else: temp_frame = self.process_face(i, face, temp_frame) num_faces_found += 1 if not roop.globals.vr_mode and num_faces_found == num_targetfaces: break elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male": gender = 'F' if self.options.swap_mode == "all_female" else 'M' for face in faces: if face.sex == gender: num_faces_found += 1 temp_frame = self.process_face(self.options.selected_index, face, temp_frame) # might be slower but way more clean to release everything here for face in faces: del face faces.clear() if roop.globals.vr_mode and num_faces_found % 2 > 0: # stereo image, there has to be an even number of faces num_faces_found = 0 return num_faces_found, frame if num_faces_found == 0: return num_faces_found, frame #maskprocessor = next((x for x in self.processors if x.type == 'mask'), None) if self.options.imagemask is not None and self.options.imagemask.shape == frame.shape: temp_frame = self.simple_blend_with_mask(temp_frame, frame, self.options.imagemask) return num_faces_found, temp_frame def rotation_action(self, original_face:Face, frame:Frame): (height, width) = frame.shape[:2] bounding_box_width = original_face.bbox[2] - original_face.bbox[0] bounding_box_height = original_face.bbox[3] - original_face.bbox[1] horizontal_face = bounding_box_width > bounding_box_height center_x = width // 2.0 start_x = original_face.bbox[0] end_x = original_face.bbox[2] bbox_center_x = start_x + (bounding_box_width // 2.0) # need to leverage the array of landmarks as decribed here: # https://github.com/deepinsight/insightface/tree/master/alignment/coordinate_reg # basically, we should be able to check for the relative position of eyes and nose # then use that to determine which way the face is actually facing when in a horizontal position # and use that to determine the correct rotation_action forehead_x = original_face.landmark_2d_106[72][0] chin_x = original_face.landmark_2d_106[0][0] if horizontal_face: if chin_x < forehead_x: # this is someone lying down with their face like this (: return "rotate_anticlockwise" elif forehead_x < chin_x: # this is someone lying down with their face like this :) return "rotate_clockwise" if bbox_center_x >= center_x: # this is someone lying down with their face in the right hand side of the frame return "rotate_anticlockwise" if bbox_center_x < center_x: # this is someone lying down with their face in the left hand side of the frame return "rotate_clockwise" return None def auto_rotate_frame(self, original_face, frame:Frame): target_face = original_face original_frame = frame rotation_action = self.rotation_action(original_face, frame) if rotation_action == "rotate_anticlockwise": #face is horizontal, rotating frame anti-clockwise and getting face bounding box from rotated frame frame = rotate_anticlockwise(frame) elif rotation_action == "rotate_clockwise": #face is horizontal, rotating frame clockwise and getting face bounding box from rotated frame frame = rotate_clockwise(frame) return target_face, frame, rotation_action def auto_unrotate_frame(self, frame:Frame, rotation_action): if rotation_action == "rotate_anticlockwise": return rotate_clockwise(frame) elif rotation_action == "rotate_clockwise": return rotate_anticlockwise(frame) return frame def process_face(self,face_index, target_face:Face, frame:Frame): from roop.face_util import align_crop enhanced_frame = None if(len(self.input_face_datas) > 0): inputface = self.input_face_datas[face_index].faces[0] else: inputface = None rotation_action = None if roop.globals.autorotate_faces: # check for sideways rotation of face rotation_action = self.rotation_action(target_face, frame) if rotation_action is not None: (startX, startY, endX, endY) = target_face["bbox"].astype("int") width = endX - startX height = endY - startY offs = int(max(width,height) * 0.25) rotcutframe,startX, startY, endX, endY = self.cutout(frame, startX - offs, startY - offs, endX + offs, endY + offs) if rotation_action == "rotate_anticlockwise": rotcutframe = rotate_anticlockwise(rotcutframe) elif rotation_action == "rotate_clockwise": rotcutframe = rotate_clockwise(rotcutframe) # rotate image and re-detect face to correct wonky landmarks rotface = get_first_face(rotcutframe) if rotface is None: rotation_action = None else: saved_frame = frame.copy() frame = rotcutframe target_face = rotface # if roop.globals.vr_mode: # bbox = target_face.bbox # [orig_width, orig_height, _] = frame.shape # # Convert bounding box to ints # x1, y1, x2, y2 = map(int, bbox) # # Determine the center of the bounding box # x_center = (x1 + x2) / 2 # y_center = (y1 + y2) / 2 # # Normalize coordinates to range [-1, 1] # x_center_normalized = x_center / (orig_width / 2) - 1 # y_center_normalized = y_center / (orig_width / 2) - 1 # # Convert normalized coordinates to spherical (theta, phi) # theta = x_center_normalized * 180 # Theta ranges from -180 to 180 degrees # phi = -y_center_normalized * 90 # Phi ranges from -90 to 90 degrees # img = vr.GetPerspective(frame, 90, theta, phi, 1280, 1280) # Generate perspective image """ Code ported/adapted from Facefusion which borrowed the idea from Rope: Kind of subsampling the cutout and aligned face image and faceswapping slices of it up to the desired output resolution. This works around the current resolution limitations without using enhancers. """ model_output_size = self.options.swap_output_size subsample_size = max(self.options.subsample_size, model_output_size) subsample_total = subsample_size // model_output_size aligned_img, M = align_crop(frame, target_face.kps, subsample_size) fake_frame = aligned_img target_face.matrix = M for p in self.processors: if p.type == 'swap': swap_result_frames = [] subsample_frames = self.implode_pixel_boost(aligned_img, model_output_size, subsample_total) for sliced_frame in subsample_frames: for _ in range(0,self.options.num_swap_steps): sliced_frame = self.prepare_crop_frame(sliced_frame) sliced_frame = p.Run(inputface, target_face, sliced_frame) sliced_frame = self.normalize_swap_frame(sliced_frame) swap_result_frames.append(sliced_frame) fake_frame = self.explode_pixel_boost(swap_result_frames, model_output_size, subsample_total, subsample_size) fake_frame = fake_frame.astype(np.uint8) scale_factor = 0.0 elif p.type == 'mask': fake_frame = self.process_mask(p, aligned_img, fake_frame) else: enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame) upscale = 512 orig_width = fake_frame.shape[1] if orig_width != upscale: fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC) mask_offsets = (0,0,0,0,1,20) if inputface is None else inputface.mask_offsets if enhanced_frame is None: scale_factor = int(upscale / orig_width) result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets) else: result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets) # Restore mouth before unrotating if self.options.restore_original_mouth: mouth_cutout, mouth_bb = self.create_mouth_mask(target_face, frame) result = self.apply_mouth_area(result, mouth_cutout, mouth_bb) if rotation_action is not None: fake_frame = self.auto_unrotate_frame(result, rotation_action) result = self.paste_simple(fake_frame, saved_frame, startX, startY) return result def cutout(self, frame:Frame, start_x, start_y, end_x, end_y): if start_x < 0: start_x = 0 if start_y < 0: start_y = 0 if end_x > frame.shape[1]: end_x = frame.shape[1] if end_y > frame.shape[0]: end_y = frame.shape[0] return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y def paste_simple(self, src:Frame, dest:Frame, start_x, start_y): end_x = start_x + src.shape[1] end_y = start_y + src.shape[0] start_x, end_x, start_y, end_y = clamp_cut_values(start_x, end_x, start_y, end_y, dest) dest[start_y:end_y, start_x:end_x] = src return dest def simple_blend_with_mask(self, image1, image2, mask): # Blend the images blended_image = image1.astype(np.float32) * (1.0 - mask) + image2.astype(np.float32) * mask return blended_image.astype(np.uint8) def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets): M_scale = M * scale_factor IM = cv2.invertAffineTransform(M_scale) face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8) # Generate white square sized as a upsk_face img_matte = np.zeros((upsk_face.shape[0],upsk_face.shape[1]), dtype=np.uint8) w = img_matte.shape[1] h = img_matte.shape[0] top = int(mask_offsets[0] * h) bottom = int(h - (mask_offsets[1] * h)) left = int(mask_offsets[2] * w) right = int(w - (mask_offsets[3] * w)) img_matte[top:bottom,left:right] = 255 # Transform white square back to target_img img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0) ##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges) img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0 img_matte = self.blur_area(img_matte, mask_offsets[4], mask_offsets[5]) #Normalize images to float values and reshape img_matte = img_matte.astype(np.float32)/255 face_matte = face_matte.astype(np.float32)/255 img_matte = np.minimum(face_matte, img_matte) if self.options.show_face_area_overlay: # Additional steps for green overlay green_overlay = np.zeros_like(target_img) green_color = [0, 255, 0] # RGB for green for i in range(3): # Apply green color where img_matte is not zero green_overlay[:, :, i] = np.where(img_matte > 0, green_color[i], 0) ##Transform upcaled face back to target_img img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1]) paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE) if upsk_face is not fake_face: fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE) paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0) # Re-assemble image paste_face = img_matte * paste_face paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32) if self.options.show_face_area_overlay: # Overlay the green overlay on the final image paste_face = cv2.addWeighted(paste_face.astype(np.uint8), 1 - 0.5, green_overlay, 0.5, 0) return paste_face.astype(np.uint8) def blur_area(self, img_matte, num_erosion_iterations, blur_amount): # Detect the affine transformed white area mask_h_inds, mask_w_inds = np.where(img_matte==255) # Calculate the size (and diagonal size) of transformed white area width and height boundaries mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) mask_w = np.max(mask_w_inds) - np.min(mask_w_inds) mask_size = int(np.sqrt(mask_h*mask_w)) # Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10)) # k = max(mask_size//12, 8) k = max(mask_size//(blur_amount // 2) , blur_amount // 2) kernel = np.ones((k,k),np.uint8) img_matte = cv2.erode(img_matte,kernel,iterations = num_erosion_iterations) #Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5)) # k = max(mask_size//24, 4) k = max(mask_size//blur_amount, blur_amount//5) kernel_size = (k, k) blur_size = tuple(2*i+1 for i in kernel_size) return cv2.GaussianBlur(img_matte, blur_size, 0) def prepare_crop_frame(self, swap_frame): model_type = 'inswapper' model_mean = [0.0, 0.0, 0.0] model_standard_deviation = [1.0, 1.0, 1.0] if model_type == 'ghost': swap_frame = swap_frame[:, :, ::-1] / 127.5 - 1 else: swap_frame = swap_frame[:, :, ::-1] / 255.0 swap_frame = (swap_frame - model_mean) / model_standard_deviation swap_frame = swap_frame.transpose(2, 0, 1) swap_frame = np.expand_dims(swap_frame, axis = 0).astype(np.float32) return swap_frame def normalize_swap_frame(self, swap_frame): model_type = 'inswapper' swap_frame = swap_frame.transpose(1, 2, 0) if model_type == 'ghost': swap_frame = (swap_frame * 127.5 + 127.5).round() else: swap_frame = (swap_frame * 255.0).round() swap_frame = swap_frame[:, :, ::-1] return swap_frame def implode_pixel_boost(self, aligned_face_frame, model_size, pixel_boost_total : int): subsample_frame = aligned_face_frame.reshape(model_size, pixel_boost_total, model_size, pixel_boost_total, 3) subsample_frame = subsample_frame.transpose(1, 3, 0, 2, 4).reshape(pixel_boost_total ** 2, model_size, model_size, 3) return subsample_frame def explode_pixel_boost(self, subsample_frame, model_size, pixel_boost_total, pixel_boost_size): final_frame = np.stack(subsample_frame, axis = 0).reshape(pixel_boost_total, pixel_boost_total, model_size, model_size, 3) final_frame = final_frame.transpose(2, 0, 3, 1, 4).reshape(pixel_boost_size, pixel_boost_size, 3) return final_frame def process_mask(self, processor, frame:Frame, target:Frame): img_mask = processor.Run(frame, self.options.masking_text) img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0])) img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1]) if self.options.show_face_masking: result = (1 - img_mask) * frame.astype(np.float32) return np.uint8(result) target = target.astype(np.float32) result = (1-img_mask) * target result += img_mask * frame.astype(np.float32) return np.uint8(result) # Code for mouth restoration adapted from https://github.com/iVideoGameBoss/iRoopDeepFaceCam def create_mouth_mask(self, face: Face, frame: Frame): mouth_cutout = None landmarks = face.landmark_2d_106 if landmarks is not None: # Get mouth landmarks (indices 52 to 71 typically represent the outer mouth) mouth_points = landmarks[52:71].astype(np.int32) # Add padding to mouth area min_x, min_y = np.min(mouth_points, axis=0) max_x, max_y = np.max(mouth_points, axis=0) min_x = max(0, min_x - (15*6)) min_y = max(0, min_y - 22) max_x = min(frame.shape[1], max_x + (15*6)) max_y = min(frame.shape[0], max_y + (90*6)) # Extract the mouth area from the frame using the calculated bounding box mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() return mouth_cutout, (min_x, min_y, max_x, max_y) def create_feathered_mask(self, shape, feather_amount=30): mask = np.zeros(shape[:2], dtype=np.float32) center = (shape[1] // 2, shape[0] // 2) cv2.ellipse(mask, center, (shape[1] // 2 - feather_amount, shape[0] // 2 - feather_amount), 0, 0, 360, 1, -1) mask = cv2.GaussianBlur(mask, (feather_amount*2+1, feather_amount*2+1), 0) return mask / np.max(mask) def apply_mouth_area(self, frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple) -> np.ndarray: min_x, min_y, max_x, max_y = mouth_box box_width = max_x - min_x box_height = max_y - min_y # Resize the mouth cutout to match the mouth box size if mouth_cutout is None or box_width is None or box_height is None: return frame try: resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) # Extract the region of interest (ROI) from the target frame roi = frame[min_y:max_y, min_x:max_x] # Ensure the ROI and resized_mouth_cutout have the same shape if roi.shape != resized_mouth_cutout.shape: resized_mouth_cutout = cv2.resize(resized_mouth_cutout, (roi.shape[1], roi.shape[0])) # Apply color transfer from ROI to mouth cutout color_corrected_mouth = self.apply_color_transfer(resized_mouth_cutout, roi) # Create a feathered mask with increased feather amount feather_amount = min(30, box_width // 15, box_height // 15) mask = self.create_feathered_mask(resized_mouth_cutout.shape, feather_amount) # Blend the color-corrected mouth cutout with the ROI using the feathered mask mask = mask[:,:,np.newaxis] # Add channel dimension to mask blended = (color_corrected_mouth * mask + roi * (1 - mask)).astype(np.uint8) # Place the blended result back into the frame frame[min_y:max_y, min_x:max_x] = blended except Exception as e: print(f'Error {e}') pass return frame def apply_color_transfer(self, source, target): """ Apply color transfer from target to source image """ source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") source_mean, source_std = cv2.meanStdDev(source) target_mean, target_std = cv2.meanStdDev(target) # Reshape mean and std to be broadcastable source_mean = source_mean.reshape(1, 1, 3) source_std = source_std.reshape(1, 1, 3) target_mean = target_mean.reshape(1, 1, 3) target_std = target_std.reshape(1, 1, 3) # Perform the color transfer source = (source - source_mean) * (target_std / source_std) + target_mean return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR) def unload_models(): pass def release_resources(self): for p in self.processors: p.Release() self.processors.clear() if self.videowriter is not None: self.videowriter.close() if self.streamwriter is not None: self.streamwriter.Close()