import roop.globals import numpy as np import onnx import onnxruntime from roop.typing import Face, Frame from roop.utilities import resolve_relative_path class FaceSwapInsightFace(): plugin_options:dict = None model_swap_insightface = None processorname = 'faceswap' type = 'swap' def Initialize(self, plugin_options:dict): if self.plugin_options is not None: if self.plugin_options["devicename"] != plugin_options["devicename"] or self.plugin_options["modelname"] != plugin_options["modelname"]: self.Release() self.plugin_options = plugin_options if self.model_swap_insightface is None: model_path = resolve_relative_path('../models/' + self.plugin_options["modelname"]) graph = onnx.load(model_path).graph self.emap = onnx.numpy_helper.to_array(graph.initializer[-1]) self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') self.input_mean = 0.0 self.input_std = 255.0 #cuda_options = {"arena_extend_strategy": "kSameAsRequested", 'cudnn_conv_algo_search': 'DEFAULT'} sess_options = onnxruntime.SessionOptions() sess_options.enable_cpu_mem_arena = False self.model_swap_insightface = onnxruntime.InferenceSession(model_path, sess_options, providers=roop.globals.execution_providers) def Run(self, source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: latent = source_face.normed_embedding.reshape((1,-1)) latent = np.dot(latent, self.emap) latent /= np.linalg.norm(latent) io_binding = self.model_swap_insightface.io_binding() io_binding.bind_cpu_input("target", temp_frame) io_binding.bind_cpu_input("source", latent) io_binding.bind_output("output", self.devicename) self.model_swap_insightface.run_with_iobinding(io_binding) ort_outs = io_binding.copy_outputs_to_cpu()[0] return ort_outs[0] def Release(self): del self.model_swap_insightface self.model_swap_insightface = None